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Abstract

Virtualized traffic via various simulation models and real-world traffic data are promising approaches to reconstruct detailed
traffic flows. A variety of applications can benefit from the virtual traffic, including, but not limited to, video games, virtual reality,
traffic engineering and autonomous driving. In this survey, we provide a comprehensive review on the state-of-the-art techniques
for traffic simulation and animation. We start with a discussion on three classes of traffic simulation models applied at different
levels of detail. Then, we introduce various data-driven animation techniques, including existing data collection methods, and
the validation and evaluation of simulated traffic flows. Next, we discuss how traffic simulations can benefit the training and
testing of autonomous vehicles. Finally, we discuss the current states of traffic simulation and animation and suggest future

research directions.
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1. Introduction

Visual traffic has attracted increasing attention from a variety of
research communities in recent years, including, but not limited
to computer games, urban visualization, urban planning and au-
tonomous driving. Urban scenes are indispensable in virtual reality,
games and animation, which inevitably involve a large number of
vehicles moving around. In order to control the motion of a single
vehicle, a simple solution is to use keyframe methods. However, sim-
ulating traffic congestion, frequent lane-changing and pedestrian-
vehicle interactions in large-scale traffic scenarios using keyframe
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methods not only requires complex design and repetitive adjust-
ments from an animator, but also the resulting vehicle movements
are rarely in accordance with physical laws.Therefore, effectively
simulating large-scale traffic flows has become an increasingly nec-
essary topic in Computer Graphics. Additionally, incorporating real-
time traffic flow into virtual road networks has become critical due
to the popularity of road network visualization tools, such as Open-
StreetMap, ESRI, and Google Maps. Nevertheless, accessing actual
trajectories of vehicles and incorporate them to virtual applications
in real time is difficult. These trends have motivated research efforts
on data-driven traffic simulation [WSLL15].

In addition to the above-mentioned applications in animation and
visualization, traffic simulation has a wide range of applications in
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Figure 1: The generated traffic flows via various traffic simulation and animation approaches: (a) synthesized traffic flows on a highway
network from Chao et al. [CDR*18], (b) a dense traffic scenario with signalized crossing from Shen and Jin [SJ12], (c) the reconstruction
of virtual traffic flows using in-road sensor data from Wilkie et al. [WSLI13], (d) the reconstructed city-scale traffic using GPS data from Li
etal. [LWLI7], and (e) a heterogeneous traffic simulation used for autonomous driving testing [CJH*19].

transportation research. Traffic simulation software packages, such
as VISSIM [PTV11], TSIS [TSI18] and PARAMICS [PAR18],
serve as effective tools for researchers to study the performance of
a traffic network. Virtual reality-based driving training programs
have helped new drivers to improve driving skills by producing
realistic traffic environments [VRd18, LWX*18]. Traffic simula-
tion can also be used as an effective tool for generating vari-
ous traffic conditions for training and testing autonomous vehicles
[SAMR18].

Furthermore, the increasing volume of vehicular traffic and com-
plex road networks have led to many traffic-related problems, such
as traffic jams, incident management, signal control and network
design optimization. These problems are difficult to solve using tra-
ditional tools that are based on analytical models [SHVDWVW16].
Thus, many research efforts have been attempted on the modelling,
simulation and visualization of traffic using advanced computing
technologies—either to analyse traffic conditions for traffic manage-
ment [PBH12, WLY*13, WYL*14] or to assist traffic reconstruction
in urban development [GDGAVU14].

One major focus of traffic simulation is to answer the follow-
ing question: Given a road network, a behaviour model and initial
vehicle states, how would the traffic evolve? There are massive
mathematical descriptions on the modelling and simulation of traf-
fic flows, which can be roughly classified into macroscopic mod-
els [SWML10], microscopic models [SJ12] and mesoscopic mod-
els [SWL11]. Although macroscopic methods treat the collection
of vehicles as a continuous flow, microscopic methods model the
dynamics of each vehicle under the influence of its surrounding
vehicles. Mesoscopic models, in contrast, combine the strengths
of both microscopic and macroscopic models to simulate traffic at
different levels of detail. In addition, the generation and represen-
tation of road networks is also a fundamental problem in traffic
simulation.

Although the aforementioned traffic models are effective in cap-
turing high-level flow appearance, the resulting simulations, how-
ever, usually do not resemble real-world traffic at the street level.
With the development of advanced sensing hardware and computer
vision techniques, empirical traffic flow data sets in the forms of
video, LiIDAR and GPS sensors are becoming increasingly avail-
able. This phenomenon gives rise to data-driven traffic animation
techniques. Example works include the reconstruction of traffic
flows from spatio-temporal data acquired by existing in-road sen-
sors [SVDBLM11, WSL13, LWL17], the synthesis of new traffic
flows from limited trajectory samples [CDR*18] and the generation
of traffic flows through learning behaviour patterns and individual
characteristics from traffic monitoring data sets [CSJ13, BMWDI16].

In spite of significant advances achieved in traffic simulation
and animation, how to measure the realism of simulated traffic
has been largely under-explored to date. Moreover, In model-based
traffic simulation and data-driven animation approaches, model
validation in terms of the similarity between simulated and real-
world traffic is always a concern. In order to address these issues,
current approaches include using subjective user evaluations and
incorporating objective evaluation metrics into the measurement
[CDX*18].

Virtual traffic via various traffic simulation and animation tech-
niques has also been applied to the training of autonomous driving.
Autonomous driving has the potential to revolutionize our trans-
portation systems. However, recent failures in testing have empha-
sized the training of these automated machines in simulated environ-
ments before deploying them to the real world [BNP*18, LWL19,
LPZ*19].

Currently, the performance of autonomous vehicles is typi-
cally tested using a single interfering road user (e.g. vehicle,
pedestrian or bicycle) with predefined behaviours in a virtual
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Figure 2: Schema of traffic simulation and animation components introduced in this survey. First, the components of traditional traffic
simulation and animation: road network generation (Section 2.4); traffic data acquisition (Section 3.1); model-based simulation (Section
2); data-driven animation (Section 3.2); and validation & evaluation (Section 4). Second, the components of autonomous driving research:
autonomous driving training data sets (Section 5.1); motion planning and decision-making methods.

environment [WEG*00, DRC*17, apol8]. Trained in simulated
traffic flows with rich interactions among various road users, an
autonomous vehicle can potentially gain the ability to handle
intricate traffic conditions in complex urban environments. In
addition, traffic simulation and animation can also benefit from
learning-based motion planning and decision-making algorithms
developed for autonomous vehicles. Specifically, with an increasing
number of driving data sets collected, the resulting accurate traffic
simulation can enrich the motion planning and decision-making of
autonomous vehicles in terms of more accurate traffic semantics.

For safe autonomous driving, a high-fidelity driving simulator,
which incorporates realistic traffic flows and complex traffic condi-
tions, is necessary. Such a simulator can produce critical training en-
vironments in an efficient and reproducible manner. Because traffic
simulations are becoming essential in autonomous driving research,
in this survey, we will particularly describe the latest developments
in autonomous driving from three aspects: data acquisition, motion
planning and simulations for testing.

Organization. The remainder of this survey is organized as fol-
lows. Section 2 presents three classes of model-based traffic simula-
tion methods, and provides different representative approaches for
the procedural modelling and geometric representation of road net-
works. Section 3 surveys various data-driven animation techniques
based on different data acquisition methods. Section 4 investigates
the validation of animation methods and evaluation of generated
virtual traffic. Section 5 presents recent efforts on data acquisition,
motion planning and the use of virtual traffic for autonomous driv-
ing research. Finally, Section 6 and Section 7 conclude this survey
with a discussion of the current states of existing studies and our
perspectives on future research directions.

2. Model-Based Traffic Simulation

An essential component in traffic simulation is portraying the mo-
tions of vehicles at various levels of detail. Early research on the
modelling and simulation of traffic flows can be traced back to

Model-based Simulation

|
v v v
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LWR Cluster model, Cellular
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faled Gas-Kinetic Car-following
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Traffic Simulation Behavior

Figure 3: Classification of model-based traffic simulation meth-
ods based on the levels of detail which these models simulate.
Here, LWR and ARZ refer to two popular macroscopic traffic mod-
els proposed by Lighthill. Whitham.Richards [LW55, Ric56] and
Aw.Rascle.Zhang [AR0O, Zha02], respectively.

1950s, when the prototypes of macroscopic and microscopic traffic
models were proposed, respectively [PipS3, LWS55]. After years of
development, there are three general types [VWKVLVH15, FSS18]
of traffic simulation techniques (illustrated in Figure 2), namely,
macroscopic (Section 2.1), microscopic (Section 2.2) and meso-
scopic (Section 2.3).

Traffic flows can be treated as a type of crowd flows: vehicles in
a flow share similar goals and behavioural rules, interacting with
neighbours while maintaining individual driving characteristics.
In Computer Graphics, crowd simulation has been an important
research area, supporting the study of collective behaviours and
dynamics [PABOS, ZCC*10]. Crowd simulation can be achieved in
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Figure 4: Illustration of the macroscopic traffic simulation ap-
proach [SWMLIO]. Each lane is divided into discrete cells. At a
given time step, the states of each cell are updated by solving the
ARZ equations, which solutions are then used to update the states
of each vehicle in each lane.

either a macroscopic manner (modelling a crowd as a whole at the
expense of realistic motions of individual agents) [NGCL09] or a
microscopic manner (modelling a crowd as a collection of move-
ments from individual agents) [WLP16].

2.1. Macroscopic methods

Macroscopic methods, also called continuum methods, describe ve-
hicles’ behaviours and interactions at a low level of detail: a traffic
stream is represented by a continuum in terms of speed, flow, den-
sity, etc. Macroscopic methods are mainly designed for efficient
traffic simulation on a large-scale road network, focusing on repro-
ducing aggregated behaviours measured with collective quantities
such as flow density and traffic flux.

One of the early first-order macroscopic models was developed
by Lighthill and Whitham [LW55] and Richards [Ric56], referred
to as the LWR model. Their model assumes that the traffic flow
rate depends only on traffic density that describes the flow-density
relationship.

The model builds a non-linear scalar conservation law for
modelling traffic flows, based on the similarities between one-
dimensional compressible gas dynamics and the evolving of traffic
flows on a single lane. Essentially, the LWR model describes the
motion of large-scale traffic flows with low-resolution details. One
of its limitations is that it cannot model the movements of a vehicle
under non-equilibrium conditions, such as stop-and-go waves.

Later, a continuous second-order traffic flow model was pro-
posed by Payne [Pay71] and Whitham [Whi74], which is known as
the Payne—Whitham (PW) model. Although the first-order model
assumes the existence of a fixed equilibrium state, the second-order
model introduces a second differential equation to describe traffic
velocity dynamics. As an limitation, the PW model can introduce
negative velocities and the information generated from vehicle dy-
namics can travel faster than vehicle velocity, meaning drivers can
be affected by their following vehicles. Aw and Rascle [AR00] and
Zhang [Zha02] proposed a modification to the PW model in order
to eliminate its non-physical behaviours. To be specific, Aw and
Rascle [AROO] introduced a pressure term to guarantee that no in-
formation travels faster than the speed of a car. Zhang [Zha02],
similarly, proposed a modification to the momentum equation
of the PW model to handle backward-propagating traffic. The
resulting model is referred to as the Aw—Rascle—Zhang (ARZ)

model, which has been thoroughly studied since [Ras02, GP06,
LMHSO07, MRO7]. Mammar et al. [MLS09] showed that the ARZ
model fits real-world data better than the LWR model numerically.

In order to produce detailed 3D animation and visualization of
traffic flows, Sewall et al. [SWML10] presented a continuum traffic
simulation model to generate realistic traffic flows on large-scale
road networks. They adapt the single-lane ARZ model to handle
multi-lane traffic by introducing a novel model of lane-changing
and using a discrete representation for each vehicle. As illustrated
in Figure 4, the flow of traffic is simulated by discretizing each lane
into multiple cells. In order to update the states of each cell, the
Finite Volume Method for spatial discretization [LeV02], combined
with a Riemann solver, is used to solve the ARZ equations. In order
to model lane-merging and lane-changing behaviours, Sewall et al.
combine continuum dynamics with discrete vehicle information by
representing vehicles as “carticles”. These “carticles” are driven by
the underlying continuum flow.

In summary, macroscopic traffic models are efficient tools to
simulate large-scale traffic. However, such techniques are limited
to networks of highways, thus not suitable for simulating street-
level traffic which consists of rich interactions among individual
cars. Moreover, because these models do not model lane-merging
behaviours of a vehicle, they cannot handle density transfer during
the lane-changing process.

2.2. Microscopic methods

Microscopic models produce vehicle motions at a high level of de-
tail: each vehicle is treated as a discrete agent satisfying certain
governing rules. A number of microscopic models have been de-
veloped for specific urban traffic simulations, attributing to their
flexibility in modelling heterogeneous behaviours of agents, diverse
road topologies and interactions among surrounding vehicles.

Early examples of microscopic models include the cellular au-
tomata model [NS92] and car-following models [Pip53, HG63]. The
motions of the vehicles in the cellular automata model are described
by evolution rules in pre-specified time, space and state variables.
To be specific, a road is discretized into cells, and the model deter-
mines when a vehicle will move from the current cell to the next
cell. Owing to its simplicity, the cellular automata model is compu-
tationally efficient and can simulate a large group of vehicles on a
large road network [KSSS04]. However, due to its discrete nature,
the generated virtual traffic can only reproduce a limited number of
real-world traffic behaviours.

In contrast, car-following models, first introduced by Pipes
[Pip53] and Reuschel [Reu50], can generate realistic driving
behaviours and detailed vehicle characteristics at the cost of
computation. They assume that the traffic flow consists of scattered
particles [SZ14] and model detailed interactions among cars. These
models represent the position and speed of each car through
continuous-time differential equations based on the stimulus-
response framework: Response = Sensitivity x Stimulus, in
which the stimulus is associated with the position and velocity of
the leading vehicle.

Over the past decades, numerous variations and extensions of
the car-following model have been developed by modelling the
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Figure 5: Situations where a vehicle must change its lane [SJ12]:
(a) reaching the end of the current lane, (b) an accident vehicle
appears in front in the current lane, and (c) a guidance sign appears
at the road crossing.

responses of a subject vehicle to its front vehicle. Two well-known
examples are the optimal velocity model (OVM) [BHN*95] and
the intelligent driving model (IDM) [THO2]. In the OVM model,
the subject vehicle is assumed to maintain its optimal velocity. Its
acceleration is determined by the difference between its velocity
and the optimal velocity of the front vehicle. In the IDM model, the
vehicle’s acceleration or deceleration is computed according to its
current speed and relative speed and position to its front vehicle.
The vehicle-specific parameters enable the IDM model to simulate
various vehicle types and driving styles.

Besides simulating traffic flows on a single lane, multi-lane sim-
ulations have also been studied [SNO3, Dav04, THGO0S5, HNTO07].
One example is the modified optimal velocity model [Dav04], which
is used to simulate traffic on a dual-lane highway and a single-
lane highway with an on-ramp; another example is the two-lane
traffic model [THGOS5], which is used to simulate traffic lateral
effects.

In order to generate detailed traffic simulations, Shen and
Jin [SJ12] proposed an enhanced IDM together with a continu-
ous lane-changing technique. Their technique can produce traffic
flows with smooth acceleration/deceleration strategies and flexible
lane-changing behaviours. The model modifies the original IDM
model to make it more suitable for signalized urban road networks.
Specifically, the acceleration process is separated into a free-road ac-
celeration term describing the driver’s intention to reach its desired
velocity, and a deceleration term describing the driver’s intention to
keep safe distances to its nearby vehicles. The deceleration term is
modified by adding an activation governing control part for generat-
ing smoother reactions to stopped vehicles. Also, the model divides
the lane-changing behaviours on urban roads into two situations:

Figure 6: Illlustration of a hybrid traffic simulation method
[SWLI1]. The traffic within the yellow bounding box is simulated
using an agent-based technique, whereas the rest traffic is simulated
using a continuum technique.

free lane changing and imperative lane changing, and provides a
flexible continuous model for both situations.

Free lane changing frequently occurs in a comparatively free road
condition. This behaviour is modelled by the double-lane MOBIL
model from Kesting et al. [KTHO7]. Imperative lane changing is
applied when the subject vehicle demands a lane-changing action
because of some imperative factors, such as reaching the end of lane
or turning at the crossing, while the gap between the subject vehicle
and its leading vehicle may be insufficient for free lane changing
(Figure 5). Lu et al. [LCX*14] extended the full velocity difference
model [JWZO01] to handle close-car-braking circumstances in rural
traffic simulations. Later, Lu er al. also introduced a personality
model into traffic simulation [LWX*14].

Compared to simulating traffic on lanes (either signle or mul-
tiple), simulating traffic at intersections is more difficult. Doniec
et al. [DMPEO8] proposed a multi-agent behavioural model for
traffic simulation by treating intersectional traffic as a multi-agent
coordination task. To be specific, first, each vehicle perceives the
surrounding traffic and makes a decision; second, an anticipation
algorithm is introduced to generate the anticipation abilities for the
simulated vehicles. Wang et al. [WXZ*18] introduced the concept
of shadow traffic for modelling traffic anomalies in a unified way in
traffic simulations. Chao et al. [CDJ15] designed a rule-based pro-
cess to model vehicle-pedestrian interactions in mixed traffic simu-
lations.

In summary, as microscopic traffic models aim to describe spe-
cific vehicle behaviours, they can be used to simulate traffic in
both continues lanes and intersections. The bottleneck is usually
the computational cost, especially when a large-scale simulation is
needed.

2.2.1. A hybrid method

Although continuum methods (i.e. macroscopic models) excel the
large-scale traffic simulation and agent-based techniques (i.e. mi-
croscopic models) excel the modeling of individual vehicles, Se-
wall et al. [SWL11] combined these two types of approaches and
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proposed a hybrid method. Their approach simulates traffic in the ar-
eas of interest using an agent-based model, while the rest areas using
a continuum model (see Figure 6). By dynamically and automati-
cally switching between the two modelling methods, their approach
can simulate traffic under different levels of detail based on user
preference.

2.3. Mesoscopic methods

Mesoscopic models are an intermediate approach between macro-
scopic and microscopic approaches. The core idea of the meso-
scopic models is to describe traffic flow dynamics in an aggregate
manner while representing the behaviours of individual drivers us-
ing probability distribution functions [HBO1c]. Mesoscopic models
can be divided into three classes: cluster models, headway distri-
bution models and gas-kinetic models [FSS18]. The cluster models
represent the dynamics of traffic flows by describing groups of ve-
hicles with the same properties [KMLKO02, MKLO5]. The headway
distribution models focus on the statistical properties of time head-
ways. Among mesoscopic approaches, the most known models are
gas-kinetic models, in which an analogy between the gas dynam-
ics and the traffic dynamics is drawn. [PA60, THH99, HHSTO1,
HBO1a].

In transportation engineering, gas-kinetic models are usually
not applied in simulations but maintain their roles in deriving
other continuum models [HelO1]. For example, Hoogendoorn and
Bovy [HB0O, HBO1b] derived a multi-class multi-lane continuum
traffic flow model based on gas-kinetic models. Gas-kinetic models
are also basis for many macroscopic models, for example adaptive
cruise control policies [DNP15]. The kinetic theory is also used to
derive a mathematical model of vehicular traffic [FT13], in which
the assumption on the continuously distributed spatial positions and
speed of the vehicles is relaxed. In Computer Graphics, mesoscopic
models are rarely utilized in traffic simulations due to a large number
of unknown parameters and complex differential or integral terms,
which restrict the simulation and animation efficiency.

2.4. Road network generation

Traffic simulation is a form of interplay between the vehicles and
the road network. The acquisition and modelling of the underly-
ing road network is an important yet challenging aspect. Digital
representations of real-world road networks have been increasingly
available, but these data are often not directly usable for simulating
traffic. Traffic simulations, based on macroscopic and microscopic
modelling methods, take place on a road network formed with lanes.
A road network contains many features such as lanes, intersections,
merging zones and ramps. Many methods have been proposed for
the procedural modelling and geometric representation of a road
network.

Parish et al. [PMO6] proposed a system called CityEngine [cit18],
using a procedural approach based on L-system to generate a road
network (Figure 7a). Taking map images as the input, the system
can generate a set of highways and streets, divide a land into lots
and build appropriate geometry for buildings on the respective al-
lotments. Later, many researchers improved road network gener-
ation models based on CityEngine [CEW*08, BN08, GPMG10].

© Procedusal inc

(b)

Figure 7: A road network created using (a) CityEngine [citl8] and
(b) the technique from Wilkie et al. [WSLI2].

For example, Sun et al. [SYBGO02] presented a template-based road
network generation model. Endowed with more flexibility, users
can edit a road network directly using the automatic road network
generation model from Chen er al. [CEW*08]. Recently, Nishida
et al. [NGDA16] presented an interactive road design system us-
ing the patches and statistical information extracted from example
road networks. Hartmann er al. [HWWK17] proposed an example-
based approach for synthesizing a road network using Generative
Adversarial Networks (GAN). They use a binary image to repre-
sent a road network patch. Because these approaches are designed
for building virtual scenes, they often fail to provide the necessary
information for traffic simulation, such as lane-to-lane connections
and adjacencies.

Several road modelling techniques were proposed for traffic sim-
ulation. Yang and Koutsopoulos [YK96] use node, link, segment
and lane to describe the semantics of a road network. Their model
has been incorporated into the traffic simulation software MIT-
SIM [BAKYO02]. In this model, a segment denotes a set of lanes
with the same geometric polylines, and a /ink denotes a collection
of segments. Vector data are stored in the segment’s data struc-
ture. The stored information includes the starting/ending points and
the curvature of a segment arc. A node is used to describe an in-
tersection. Here, the node must be supplied to the model as input
data and only used to describe whether the links are connected.
The conflict relationship between links in each direction at an in-
tersection is not considered. In VISSIM [PTV11], traffic simulation
software, link and connector, are adopted to describe the topology
of a road network, which helps the presentation of roads with more
complex geometries. However, the road network in VISSIM only
consists of consecutive segments, so it is difficult to handle the con-
flicts among different directions at an intersection. Similarly, other
road network representation models [Par03, BC05, SWL11, SJ12]
have been made available. Recently, Cura er al. [CPP18] use real
Geographic Information System (GIS) data to produce a coherent
street-network model, containing topological traffic information,
road surface and street objects. The system can provide lanes and
lane inter-connections as basic geometric information needed for
traffic simulation. However, they use /ane as an atomic unit to de-
fine and organize a road network, while ignoring the vector data
of a road network. Worth mentioning, in order to facilitate the data
exchange among different driving simulators, an open data format
named OpenDRIVE [DGO06] was proposed to standardize the logical
road description.
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Aiming at improving the visualization of vehicle motions,
Wilkie et al. [WSL12] proposed a novel road network model
(Figure 7b) to automatically transform low-detailed GIS data into
high-detailed functional road networks for simulation. The lane-
centric topological structure and the arc road representation can
be generated using this model. This model defines an intersec-
tion on the basis of a lane. An intersection is managed in a
simulation via traffic signals and pre-determined moving prior-
ities. The resulting Road Network Library [WSLL15] can be
found at http://gamma.cs.unc.edu/RoadLib/. The model has mo-
tivated more lane-based simulation techniques, for example Mao
et al. [MWDW15] model lanes based on the road axis under the
Frenet frame to facilitate complex traffic simulations.

Worth meaning, depends on applications, traffic simulation at
different levels of detail require different information regarding the
underlying road network. In general, macroscopic traffic simulation
requires less details of a road network—mainly the geometrical
information is needed so that the propagation of density and speed
of a traffic flow can be modelled. Microscopic traffic simulation,
in contrast, as it outputs detailed motion of individual vehicles,
usually requires more information regarding a road network. Such
information include lane (instead of road) separation and joining,
traffic signal logic, moving priorities at intersections and ramps, etc.

3. Data-Driven Traffic Simulation

In this section, we explore the acquisition of real-world traffic data
(Section 3.1) and various data-driven approaches for traffic recon-
struction and synthesis (Section 3.2).

3.1. Traffic data acquisition

Traffic sensors come in several forms [LBH*10, Led08]. To list
few examples, one fixed sensor is inductive-loop detector, which is
usually placed on highways and major roads to record the attributes
of every vehicle that passes. Another fixed sensor is video camera,
which is also used for monitoring traffic. In addition to fixed sensors,
mobile sensors are also ubiquitous: cell phones and GPS devices are
used to record the speed of a vehicle along with its position.

The inductive-loop detector has become the most utilized sensor
since its introduction in the early 1960s [AKH*12, KMGKO06]. It can
detect vehicles’ passing or arriving at a certain point, for instance,
approaching a traffic light or in motorway traffic. An insulated,
electrically conducting loop is installed in the pavement. Vehicles
passing over or stopped within the detection area decreases the
inductance of the loop. Then, the electronic unit senses this event as
adecrease in frequency and sends a pulse to the controller to signify
the passage or presence of a vehicle. This in-road sensor can usually
track the passing time, the lane id and the velocity of a vehicle.

Video camera, as an over-roadway sensor, has also been widely
deployed. An example is the Next Generation Simulation (NGSIM)
program [NGS18], in which the cameras are installed along the
road capturing traffic data at 10 frames per second. The resulting
dataset encloses detailed vehicle trajectories. Table 1 lists four pop-
ular NGSIM data sets in terms of road length, road types, record
time and the number of vehicles. Figure 8 shows an example of data

Figure 8: Eight cameras installed over U.S. Highway 101. The
photo on the right shows a video camera mounted on the top of a
building overlooking the highway.

Table 1: Four selected NGSIM data sets [NGS18].

Road length # of
Location (feet) Road type  Record time  vehicles
1-80, Emeryville, 1650 Freeway, 4:00 pm— 3200+
California one 5:30 pm
on-ramp
US 101, Los 2100 Freeway, 7:50 am— 3000+
Angeles, one 8:35 am
California on-ramp
&
off-ramp
Lankershim Blvd, 1600 Arterial, 8:30 am— 1500+
Universal City, four inter- 9:00 am
California sections
Peachtree Street, 2100 Arterial, five  12:45 pm— 1500+
Atlanta, intersec- 1:00 pm
Georgia tions 4:00 pm—
4:15 pm

collection on U.S. 101 Highway: eight synchronized video cameras,
mounted from the top of a 36-story building adjacent to the freeway,
recording vehicles passing through the study area. In order to process
the large amount of data being captured, NGSIM-VIDEO [NGS18]
is developed to automatically extract vehicle trajectories from
images.

Although traditional traffic data collection methods through in-
road sensors are costly in general, mobile data such as GPS reports
have becoming increasingly available and have been used in esti-
mating citywide traffic conditions [AA06, LNWL17]. Taxicabs and
shared ride services (e.g. Uber and Lyft) systematically equip their
car fleets with these devices. Attributes such as locations, speed
and directions of a car are sent to a central processing centre. After
processing, useful information (e.g. status of traffic, and alterna-
tive routes) will be broadcast to drivers on the road [TEBH98].
The current public available GPS data sets include Mobile Cen-
tury [HWH#*10], T-Drive [tdr19], GeoLife [geo19] and Uber Move-
ment [ubel7]. Although promising, besides the inherent noise,
GPS data usually contain a low sampling rate, meaning the time
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Output Trajectory y

Figure 9: lllustration of traffic reconstruction from temporal-
spatial data acquired from in-road sensors. For the vehicle i, the
sensors provide a vector (t*, 14, v, t8 1B vB € 1€, vC) as data
input, where t*, I, v}* are, respectively, the passing time, the lane
id and the velocity of vehicle 1 when passing point A (similarly for
point B and point C).

difference between two consecutive points can be large (e.g. greater
than 60 s), and exhibit spatial-temporal sparsity, meaning the data
can be scarce in certain time periods and areas. So, in order to
use GPS data in reconstructing traffic dynamics, several processing
steps are required [LNWL17, LICL18].

Besides single-vehicle data, many efforts have been invested in
collecting traffic data from connected vehicles [HLO8, RMR14].
As an example, the Safety Pilot Model Deployment (SPMD) pro-
gram was launched at Ann Arbor, Michigan, United States in 2012.
Approximately 3000 vehicles were equipped with GPS antennas
and DSRC (Dedicated ShortRange Communications) devices. Each
vehicle was broadcasting Basic Safety Messages including its po-
sition and velocity to nearby vehicles and roadside units. These
connected-vehicle data provide opportunities to improve intelligent
transportation system applications as well as detailed multi-lane
traffic simulation and animation. Because this type of data can be
sampled at a high frequency (e.g. 10 Hz [BS15]), which can result in
considerable cost of storage and communication systems, they are
usually processed via a down-sampling but information-preserving
technique [MOH*14, LLP19].

3.2. Traffic reconstruction and synthesis

Creating a digital representation of traffic that corresponds to real
world conditions is referred to as “virtualized traffic” and was
first introduced by Van Den Berg et al. [SVDBLMI1]. In their
work, a continuous traffic flow is reconstructed and visualized from
the spatio-temporal data provided by traffic sensors. As shown in
Figure 9, the sensors (points A, B and C) are placed on the road
at intervals of 200-400 m. For a specific vehicle i, the sensor A
provides a tuple (¢, 14, v/, t2 18, v £ 1€,vF) as data input,
where 1, I, v/ are, respectively, the passing time, the lane id and
the velocity of the vehicle i (similarly for the points B and C). The
task is to compute trajectories (the blue curve in Figure 9) for the
vehicle i on the road starting and arriving in the given lanes, at
the given times, and with the given velocities. The approach first
discretizes possible state-time space and constrains the motion of a
vehicle to a pre-computed roadmap. Then, it searches for an optimal

Sensors State Detailed
N Estimation Reconstruction
3 Esemble <.)1‘ \./CIO.C 111]y Agent-based
Velocity macroscopic controller, simulation
and simulations
density Estimate of Boundary §
measure- > state at ime t B> controller
nlents Ensemble
Kalman Merging

smoother controller

Figure 10: Pipeline of a traffic flow reconstruction algo-
rithm [WSL13]. The algorithm integrates an efficient state estima-
tion method using Ensemble Kalman Filter and continuum traffic
simulation to efficiently reconstruct traffic. The results are visual-
ized using agent-based traffic simulation to produce realistic motion

for individual vehicles.

trajectory for each vehicle in the roadmap that minimizes the num-
ber of lane-changing and the amount of acceleration/deceleration,
and maximizes the distance to other vehicles to obtain smooth
and realistic motions. For multiple vehicles, a priority based
multi-robot path planning algorithm [VDBOO07] is utilized to
compute the trajectories of vehicles. However, the priority-based,
multi-agent route planning algorithm is time consuming, which
makes this approach quickly become intractable as the resolution
of discretization in the search space increases.

With the same goal of reconstructing traffic flow from in-road
sensor measurements, Wilkie e al. [WSL13] introduced a real-time
technique by integrating macroscopic state estimation from sparse
sensor measurements with an agent-based traffic simulation system
to reconstruct realistic motions of individual vehicles. As illustrated
in Figure 10, this method features a traffic state estimation phase,
in which an ensemble of Kalman smoothers (EnKS) [Eve03] and a
continuum traffic simulator are used to create an estimate of velocity
and density fields over the entire road network. The state estimate is
then used to drive an agent-based traffic simulation model to produce
the detailed motions of individual vehicles. Finally, the output is a
2D traffic flow consistent with the original traffic signals measured
by the sensors. Compared to the traffic reconstruction work by
Sewall et al. [SVDBLM11], this method shows a higher flexibility
and a lower computational cost. However, this estimation method
is fundamentally macroscopic except the matching of individual
vehicles.

Recently, Li et al. [LWL17] proposed a method to reconstruct
city-scale traffic from GPS data. To address the issue of insufficient
data coverage, this method takes a GIS map and GPS data as input,
and reconstructs city-scale traffic using a two-phase process. At the
first phase of initial traffic reconstruction, the flow conditions on in-
dividual road segments are reconstructed and progressively refined
from the sparse GPS data using statistical learning combined with
optimization, map-matching and travel-time estimation techniques.
At the second phase of dynamic data completion, a metamodel-
based simulation optimization is introduced to efficiently refine the
reconstructed results from the first phase, along with a microscopic
simulator to dynamically interpolate missing data in the areas of
insufficient data coverage. To ensure that the reconstructed traffic is
correct, the method further fine-tunes the simulation with respect to
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Figure 11: Texture analogy of a set of two-lanes vehicle trajecto-
ries [CDR*18]. The spatial-temporal information of the trajectory
set can be conceptually viewed as a 2D texture, and each traffic texel
encodes a vehicle’s states at a certain frame, including its move-
ment information and position relationship with its neighbouring
vehicles.

Randomized Forest BPNN

,—‘—'—‘ Input Layer Hidden Layer  Output Layer
weo 1y veo 7 o
PN O ©O Split node O

inanadd)— Q &A1 O \
A\ A\ A\ A\ Oy O—

/\ /\ I\ /\ ) — O o) \
q o 0 / oO—

3 O Iy |
{ ‘ Vtaeratt) — QO (@) / O — Vlralt*h
or

sy 4 M, &6 S84

li). .

Probabilty of lane changing

Lane-changing decision-making Lane-changing execution

Figure 12: Illustration of the pipeline of the data-driven lane-
changing model [BMWDI6]. The pre-processing step extracts the
most relevant features from the pre-collected traffic data set. Then,
the decision-making module infers whether the subject vehicle
should perform lane-changing as well as which target lane/gap
it should change to. Finally, the execution module computes the
detailed trajectories of involved vehicles to accomplish a lane-
changing task.

citywide boundary (traffic) constraints and the reconstructed traffic
flow from the first phase. This is achieved through the error approx-
imation of the traffic flow computed by the metamodel-based for-
mulation.

Although the above-mentioned traffic reconstruction techniques
are dedicated to predict complete traffic flows with sparse input
data in the same scenario, there are other data-driven traffic syn-
thesis methods aiming to generate new traffic flows from limited
traffic trajectory samples. Chao er al. [CDR*18] synthesize new
vehicle trajectories through a fusion of texture synthesis and traf-
fic behaviour rules, using a limited set of vehicle trajectories as
input samples. The example (input) vehicle trajectory set contains
a variety of traffic flow segments in terms of the number of lanes
and flow density. As illustrated in Figure 11, by taking the spatial-
temporal information of traffic flows as a 2D texture, the genera-
tion of new traffic flow can be formulated as a texture synthesis

Grid Map

Vi Vy N p P X

Figure 13: [llustration of the environment matrices in intersec-
tional traffic simulation [BMWDI19]. For vehicle A, a window with
size 31 x 31 is use to describe the surrounding area. An environ-
ment matrix including five channels (V,, Vy, N,, ®, x). V, (or Vy)
visualizes the velocities of vehicle B and C. N, denotes the num-
ber of pedestrians and cyclists. ® and x represent the area into
which vehicle A can drive and the visible area from the drone’s
perspective, respectively.

process, which is effectively solved by minimizing a newly devel-
oped traffic texture energy metric. To be specific, each texel in traffic
texture encodes a vehicle’s state at a certain frame, including its ve-
locity, position and dynamic relationships with its neighbouring
vehicles. The traffic texture energy metric measures the similarity
between the synthesized traffic flows and given traffic flow samples.
Each vehicle’s velocity in the synthesized traffic flow is determined
by finding the best matched texel in the input traffic flow sam-
ples. The synthesized output not only captures the spatial-temporal
dynamics of the input traffic flows, but also ensures traffic fea-
tures such as the safe distance between vehicles and lane-changing
rules.

Instead of reconstructing virtual traffic based on data acquired
from in-road sensors or synthesizing new traffic flows from existing
trajectory data, researchers have also employed machine learning
algorithms to learn the detailed motion characteristics of vehicles,
including acceleration/deceleration in longitudinal direction, and
lane-changing process. Chao er al. [CSJ13] presented a video-based
approach to learn the specific driving characteristics of drivers from
videos for traffic animation. This approach formulates the estima-
tion of each vehicle’s unique driving habit as a problem of finding
the optimal parameter set of a microscopic driving model, which
can be solved using an adaptive genetic algorithm. The learned
characteristics can be used to reproduce the traffic flow in a given
video with a high accuracy and can also be applied for any agent-
based traffic simulation systems. Bi et al. [BMWDI16] learn the
lane-changing characteristics from vehicle trajectory data. As illus-
trated in Figure 12, this approach first extracts the features that are
most relevant to a lane-changing task from a pre-collected vehi-
cle trajectory data set. The extracted features are then utilized to
model the lane-changing decision-making process and estimate the
lane-changing execution process.
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Figure 14: Snapshots of the driver’s view study (a) and the experi-
ment outcomes (b) [CDR*18]. Black boxes at the left side and white
boxes at the right side indicate the total number of times when the
participants voted the results using the corresponding method. Gray
boxes in the middle indicate “undecided choices” (i.e. perceptually
equivalent). The symbol * indicates the computed statistical signifi-
cance according to a two-tailed independent one-sample t-test with
p < 0.05.

The above-mentioned works were focused on simulating vehicles
on freeways or large urban networks. Recently, Bi et al. [BMWD19]
proposed a deep learning-based framework for traffic simulation at
intersections. In order to describe the visual perception of vehicle-
environment interactions, a grid coordinate system called grid map
is built to encode interactions among heterogeneous vehicles mixed
with pedestrians. As shown in Figure 13, a window with five chan-
nels sliding on the grid map can generate an environment matrix
for each vehicle. The environment matrices capture the velocities
and positions of vehicles and pedestrians around a vehicle. Besides
environment matrices, vehicle identities based on a collected inter-
sectional traffic data set are adopted to describe the current vehicle
states. Then, convolution neural networks and recurrent neural net-
works are employed to learn the patterns of vehicle trajectories at
intersections. Besides simulating intersectional traffic, it can also be
used to alter existing intersectional traffic animation by providing
vehicles new destinations and driving environments.

4. Validation and Evaluation

Broadly speaking, two types of virtual traffic evaluations could be
performed: visual and statistical [TKO4]. In the visual validation,
graphical representations of the real-world traffic and the simu-
lated traffic are displayed side by side to determine whether they
can be differentiated [SVDBLM11, CSJ13]. In the work of Chao
et al. [CDR*18], researchers conducted user studies [KS40] using
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Figure 15: Comparison between agent-based (micro) simulation,
continuum (macro) simulation, our hybrid simulation technique and
real-world NGSIM data on highway 101. These graphs show density,
velocity and flux recorded over 15-s intervals centred around the
times shown at a sensor near the end of the highway (620 m from
the start) [SWLI11].

pairwise comparison on the generated traffic flows with three differ-
ent methods: (1) the ground-truth (i.e. the NGSIM traffic flow data),
(2) the proposed texture-based traffic synthesis method [CDR*18]
and (3) one of the latest developments of the IDM model [SJ12]. For
each test scene, three different traffic flow animations are generated
using the above three different approaches, respectively. As shown
in Figure 14(a), participants are asked to select the more realistic
one in a pair of two animation clips. In addition, the participants
are allowed to select the “Undecided” option, if they cannot deter-
mine which clip is more visually appealing. To counter-balance the
order of the visual stimuli, the pairs are displayed according to the
Williams design latin square [Wil49]. The experiment outcomes of
this user study are shown in Figure 14(b). In addition to the counted
votes, the researchers also performed the one-sample #-test and the
paired-sample z-test, and computed the corresponding p-value to
quantify the statistical significance of the voting outcomes.

As subjective user studies are unavoidably time consuming and
error-prone, statistical validation through quantitative and objective
measures can be used not only for measuring the realism of vari-
ous simulated traffic flows but also for objectively comparing the
performance of different traffic simulation models in a consistent
manner. For traffic simulation and animation techniques, direct tra-
jectory comparisons are usually not performed due to the stochastic
nature of traffic. Instead, comparisons of the averaged velocities
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(a) Data from real world (b) Fidelity score: 0.73 (d) Fidelity score: 8.99

Figure 16: Fidelity measure comparisons among three virtual traffic flows generated by the IDM model [SJ12] using three different parameter
sets ((b)—(d)). The initial traffic states of the simulator were set to the same values as the real-world traffic flow (a). Differences between the
simulated traffic and real-world ground truth are highlighted using white circles. For the dictionary-based fidelity evaluation, a smaller value

of the metric indicates a higher fidelity of virtual traffic [CDX*18].
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Figure 17: The pipeline of the dictionary-based fidelity measure for
virtual traffic [CDX*18]. The blue boxes show the to-be-evaluated
input of the system, which contains real world traffic dataset and
simulation data.

and traffic volumes over time are common (e.g. Figure 15 from
Sewall er al. [SWL11]). At a more detailed level, specific motion
parameters, including velocity, acceleration and vehicle gap, have
also been used to validate the effectiveness of traffic simulation
techniques [CSJ13, BMWD16].

Recently, Chao et al. [CDX*18] introduced a general, dictionary-
based learning method to quantitatively and objectively measure the
fidelity of traffic trajectory data. First, a traffic-pattern dictionary
that characterizes common patterns of real-world traffic behaviour
is built offline from pre-collected ground-truth traffic data. The
intermediate learning error is set to the benchmark of the dictionary-
based traffic representation. With the aid of the constructed dictio-
nary, the realism of input (simulated) traffic flows can be evaluated
by comparing its dictionary-based reconstruction error with the
benchmark dictionary error. As shown in Figure 17, this method
consists of four stages: (1) the extraction of spatial-temporal traffic
flow features, (2) dictionary learning (i.e. construction of the traffic
pattern dictionary) from real-world traffic data, (3) dictionary-based
reconstruction of any input traffic flow data and (4) the computation
of a quantitative measure based on the reconstruction error. This
evaluation metric can be robustly applied to any simulated traffic
flows. Figure 16 shows the evaluation results of several different
traffic data. The range of fidelity scores is set to [0..10]. If the

simulated traffic is closer to the real-world (training) traffic data
set, the fidelity score will have a smaller value, and vice versa.

5. Applications in Autonomous Driving

Autonomous vehicles have the potential to release people from
driving a vehicle thus improving their productivity during a trip,
increase the safety and efficiency of current transportation systems
and transform transportation into a utility available to anyone, any-
time. In this section, we will describe the recent developments
in autonomous driving, including training data collection for au-
tonomous driving (Section 5.1), deep-learning based motion plan-
ning methods(Section 5.2) and simulations for autonomous driving
(Section 5.3).

5.1. Autonomous driving data sets

The traffic data sets mentioned in Section 3.1 are collected for
traffic flow reconstruction and virtual traffic animation. Those data
sets may not be useful for building an autonomous driving system.
Knowing that training data are essential for autonomous driving, we
survey existing driving data sets (described below), in the forms of
first-view video, LiDAR data and GPS information under different
traffic conditions. These data sets have facilitated the development
of autonomous driving systems and the learning of various driv-
ing behaviours.

Jain et al. [JKR*15] collected a diverse data set with 1180 miles
natural freeway and city driving behaviours from 10 drivers. Video
clips from both inside and outside the car, GPS reports and speed
measurements were recorded.

The comma.ai [SH16] data set is a public data set, which contains
around 7.25 hours’ highway driving data. The data set has been
divided into 11 video clips. The released video has a resolution at
160 x 320. The speed, steering angles, GPS reports, gyroscope and
IMU from several sensors were also recorded.

The Berkeley DeepDrive Video data set (BDDV) [GKB*16] con-
sists of real driving video and GPS/IMU data. A variety of driving
scenarios, such as cities, highways, towns and rural areas in several
US major cities, were recorded. The BDDV contains over 10k hours
dashboard-camera video streams.
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The LiDAR-Video data set (LiVi-Set) [CWL*18] includes large-
scale high quality point clouds from a Velodyne laser scanner and
images from a dashboard camera. The Velodyne laser scanner col-
lects point clouds in 360 degrees horizontal view and from —30.67
to +10.67 degrees vertical view. The total amount of point clouds
data is around 1TB. The density is about 700 000 points per sec-
ond. About 15G video clips were recorded via a dashboard camera.
A recording software toolkit was remotely connected to the vehicle
controller in order to obtain the velocity from on-board sensors. This
data set covers various traffic conditions including arterial roads,
primary roads, mountain roads, school zones and special tourist
routes.

The Honda Research Institute Driving Dataset (HDD) [RCMS18]
includes 104 hours of driving data in San Francisco Bay Area. A
diverse set of traffic scenes is included. The total size of the post-
processed data set is around 150GB and 104 video hours.

Drive360 [HDVG18] includes 60 h of driving video from eight
surround-view cameras. Low-level driving maneuvers (e.g. steering
angles and speed control) were recorded via the vehicle’s CAN
bus. The data have a high temporal resolution, 360 degrees view
coverage, frame-wise synchronization and diverse road conditions.

Some other data sets without driving behaviours can also con-
tribute to visual semantic understanding and vision-based control
in autonomous driving. The KITTI data set [GLSU13, GLU12] is
recorded using Foru high resolution video cameras, a Velodyne laser
scanner and a localization system. This data set consists of 289 stereo
and optical flow image pairs, stereo visual odometry sequences of
39.2 km length, and more than 200k 3D object annotations cap-
tured in cluttered environments. This data set is intended for the
tasks of stereo, optical flow, visual odometry/SLAM (Simultaneous
Localization And Mapping) and 3D object detection.

The Cityscape data set [COR*16] consists of a large, diverse set
of stereo video sequences recorded on the streets of 50 cities. A total
of 5000 of these images have high quality pixel-level annotations;
20,000 additional images have coarse annotations. The data set
captures diverse street scenes in different seasons.

The Oxford RobotCar dataset [MPLN17] includes over 1000 km
driving data with almost 20 million images collected from six cam-
eras, along with LIDAR and GPS data, from a variety of weather
conditions, including heavy rain, nigh, direct sunlight and snow.
Because the recording time of this data set spans a year, some roads
and buildings are subject to change. Another data set from Udac-
ity [Uda] includes low-level driving maneuvers via the CAN bus.

Vision-based semantic segmentation of an urban environment is
essential for autonomous driving. Various data sets have been pro-
posed [RSM*16, TKWU17, WU18] including a wide variety of
synthetic driving or street scenes of semantic segmentation, con-
tributing to semantic understanding and vision-based control. A
detailed comparison of different autonomous driving data sets is
shown in Table 2.

It is worth noting that an autonomous driving data set can also
contribute to traffic simulation and animation. To be specific, first,
vehicle trajectories can be used to calibrate traffic simulation mod-
els; second, large-scale traffic data sets can enrich data-driven traffic

synthesis methods; third, the evaluation of virtual traffic can benefit
from various real-world traffic data sets.

5.2. Motion planning and decision-making

Motion planning and decision-making are critical for autonomous
agents to navigate in their environments. In this section, we re-
view several learning-based motion planning methods and decision-
making algorithms for autonomous vehicles and other intelligent
agents. We refer interested readers to additional review articles in-
clude [KQCD15, PCY*16, SAMR18] for further reading.

Pomerleau [Pom89] introduced ALVINN (Autonomous Land ve-
hicle In a Neural Network), which has pioneered end-to-end ap-
proach for autonomous navigation. The ALVINN takes the images
from cameras and laser range finders as the input to navigate a vehi-
cle. Instead of taking the mediated perception for driving decision-
making and the behaviour reflex with regressors approaches, Chen
et al. [CSKX15] map several affordance measures in driving with
images-based direct perception. A deep convolutional neural net-
work (CNN) is trained based on the screenshots from a car racing
video game TORCS with labels. This method was tested on car-
mounted smartphone videos and the KITTI dataset [GLSU13].

With a variety of acquired traffic data sets and the development of
advanced computing devices, more end-to-end deep learning frame-
works for autonomous driving have been developed over the years.
Bojarski er al. [BDTD*16] use CNN (called PilotNet [BYC*17])
to take the raw pixels from front-facing cameras as the input to
produce steering behaviour. This framework is powerful for road
following without manual decomposition and semantic abstraction.
Gurghian et al. [GKB*16] presented an end-to-end deep CNN to
estimate lane positions directly for the vehicles. The input images
are from laterally mounted down-facing cameras, which provides a
more optimized view than those from front-facing cameras for lane-
marking.

Later, Xu et al. [XGYD17] use a FCN-LSTM framework based on
a large-scale crowd-sourced vehicle action data to learn generic ve-
hicle motion. This approach adopts a new paradigm to learn models
from uncalibrated sources. After training, it can produce either dis-
crete actions (e.g. straight, stop, left turn, and right turn) or a continu-
ous action (e.g. lane following and steering control) for navigating an
autonomous vehicle. Instead of learning autonomous driving model
based on traffic videos data, the work by Chen et al. [CWL*18§]
demonstrates that extra information, such as LiDAR point clouds
and videos recordings, can be useful for autonomous driving.

Lenz et al. [LDLK17] focus on vehicle motions at a highway
entrance. They trained a deep neural network to predict vehicle
motions using Partially Observable Markov Decision Processes.
Kuefler et al. [KMWKI17] adopt the Generative Adversarial
Imitation Learning to learn driving behaviours. This approach
overcomes the problem of cascading errors and can produce
realistic driving behaviours. Hecker ef al. [HDVG18] learn a novel
end-to-end driving model by integrating the information from
surrounding 360-degrees view cameras into the route planner. The
network used in this approach directly maps the sensor outputs
to low-level driving maneuvers including steering angles and
speed. Kim et al. [KRD*18] introduced an end-to-end, explainable
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Table 2: Comparison of various autonomous driving datasets. .

Sensors & videos

Driving Driving Camera Video GPS
Data set Intention behaviours time (h) Areas view image LiDAR IMU Conditions
KITTI Semantic & - 1.4 City, Front-view Vv VA v one weather
[GLSU13] geometric Highway condition,
[GLU12] understanding daytime
Cityscape Visual semantic - < 100 City Front-view v - J multiple
[COR*16] & geometric weather
understanding conditions,
daytime
Comma.ai Driving v 7.25 Highway Front-view v - v night, daytime
[SH16] behaviour
learning
BDDV Semantic & N 10k Front-view v - v multiple
[GKB*16] geometric un- Highway weather
derstanding, conditions,
driving daytime
behaviour
learning
Oxford Long-term - 214 360-degree Vv - Vv multiple
[MPLN17] localization & view weather
mapping conditions,
daytime
Udacity Semantic & - 8 Front-view v Vv Vv multiple
[Uda] geometric un- Highway Left- weather
derstanding, view conditions
driving Right-
behaviour view
learning
HDD Driving v 104 Front-view v v V multiple
[RCMS18] behaviour Highway Left- weather
learning, view conditions,
causal Right- daytime
reasoning view
LiVi-Set Driving Vv 20 Front-view Vv Vv VA multiple
[CWL*18] behaviour Highway weather
learning conditions,
daytime
Drive360 Driving Vv 60 360-degree Vv - v multiple
[HDVGI18] behaviour Highway view weather
learning conditions,
daytime

driving approach for autonomous driving by incorporating a
grounded introspective explanation model. This model consists of
two parts: the first is a CNN-based visual attention mechanism that
maps images to driving behaviours, and the second is an attention-
based, video-to-text model for textual explanations of model
actions. Yang et al. [YLWX18] exploit the virtual traffic data col-
lected in CARLA and TORCS to predict vehicle behaviours, called
DU-drive (Figure 18). Maqueda et al. [MLG*18] propose a deep
neural network approach to predict the steering angles of vehicles.

Reinforcement learning has also been adapted for autonomous
driving in recent years. Abbeel et al. [ADNTO08] presented an
efficient algorithm to mediate the trade-off between global navi-
gation and the local planning for generating vehicle trajectories.

Silver et al. [SBS13] presented a proper coupled cost functions for
autonomous navigation systems to balance different preferences
including where and how a vehicle should be driven. Lillicrap
et al. [LHP*15] adopt a deep Q-Learning algorithm to implement
an actor-critic, model-free system that learns a policy to lead a ve-
hicle to stay on the track in a simulated driving environment. Kud-
erer et al. [KGB15] proposed a feature-based inverse reinforcement
learning method to learn individual driving styles for autonomous
driving. Wolf et al. [WHW*17] presented a Deep Q-Networks to
steer a vehicle in 3D physics simulations. In this approach, the
goal of a vehicle is to follow the lane to complete laps on arbi-
trary courses, and an action-based reward function is motivated
by a potential in real word reinforcement learning scenarios. Pan
et al. [PYWL17] use a novel realistic translation network to train an
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Figure 18: The architecture of DU-Drive [YLWX18]. The model is closely related to conditional GAN. The generator network G transforms
a real image to a virtual image, from which the vehicle command is predicted by the predictor network P. The discriminator network D
distinguishes fake virtual images from true virtual images. Both the adversarial objective and the prediction objective drive the generator G
to produce the virtual representation that yields the best prediction resullt.

autonomous driving model in a virtual environment and then use it
in the real-world environment. In this virtual-to-real reinforcement
learning framework, the images from virtual environment are seg-
mented to scene-parsing representations first and then are translated
to synthetic images. Liang e al. [LWYX18] presented a general
Controllable Imitative Reinforcement Learning approach to alle-
viate the low exploration efficiency for a large continuous action
space. Based on the vision inputs directly from the CARLA simu-
lator, autonomous driving can be achieved with a high success rate.

In order to efficiently and safely navigate vehicles in complex
traffic environments, autonomous vehicles need to forecast the mo-
tions of surrounding vehicles. The interaction among vehicles and
pedestrians should be accurately represented [LVL14]. The task of
trajectory prediction can be divided to several categories: physics-
based, maneuver-based and interaction-aware models. Also, a sig-
nificant amount of deep learning based works have been done for
human trajectory prediction [AGR*16, VMO18, GJFF*18, MA18,
SKS*19, XPG18, HST*18]. Here we limit our focus to vehicle
trajectory prediction using deep neural networks.

Lee et al. [LCV*17] proposed a Deep Stochastic IOC RNN
Encoder-decoder framework to predict future distances for interact-
ing agents in dynamic scenes, which can produce accurate vehicle
trajectories in driving scenarios. Kim ez al. [KKK*17] proposed an
LSTM-based probabilistic vehicle trajectory prediction approach
which uses an occupancy grid map to characterize the driving en-
vironment. Deo and Trivedi [DT18] adopt a convolutional social
pooling network to predict vehicle trajectories on highways. The
whole network includes an LSTM encoder, convolutional social
pooling layers, and a maneuver-based decoder. Specifically, it first
uses an LSTM encoder to learn vehicle dynamics based on track
history. Then, it uses convolutional social pooling layers to capture
the inter-dependencies of the trajectories of all vehicles, and finally

it trains a maneuver-based LSTM decoder to predict a distribution
of future vehicle trajectories.

5.3. Simulation for autonomous driving

Although the development of machine learning approaches largely
facilitates the motion planning and decision-making in autonomous
driving, the amount of real-world data is still insufficient to cover
many complex traffic scenarios, thus constraining autonomous driv-
ing systems from learning diverse driving strategies and, more im-
portantly, recovery actions in dangerous situations. This makes un-
manned vehicles always adopt the most conservative and inefficient
decisions for safety reasons. It has been reported that autonomous
vehicles have caused some fatal accidents. These observations have
stimulated the development of a high-fidelity driving simulator as an
alternative and effective tool to provide various types of traffic condi-
tions for training autonomous vehicles. In addition, a simulator can
enable comprehensive and thorough safety tests of an autonomous
vehicle before its deployment in the real world [ARB*15, APPI11,
LF09].

In fact, simulation has been used for training driving models
since the early days of autonomous driving research [Pom89].
Later, racing simulators have been used to evaluate various
driving approaches. For example, Chen er al. [CSKX15] use
TORCS [WEG*00] to evaluate the proposed direct perception
model for autonomous driving. Recently, researchers [RVRK16,
JRBM*17, RHK17] leverage Grand Theft Auto V (GTA V) to de-
rive autonomous driving policies, which result in comparable per-
formance to control policies that derived from manually annotated
real-world images.

CARLA [DRC*17], as an open-source simulator, has been devel-
oped to support development, training and validation of autonomous
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Figure 19: A street traffic in the CARLA Simulator [DRC*17],
shown from a third-person view in four weather conditions. Clock-
wise from top left: clear day, daytime rain, daytime shortly after
rain and clear sunset.

urban driving models. This simulation platform supports flexible
setup of sensor suites and provides signals that can be used to train
driving strategies. The signals include GPS coordinates, speed, ac-
celeration/deceleration and detailed data on collisions. A wide range
of environmental factors can be specified, including weather and
time of day (Figure 19). With these settings, CARLA has been used
to study the performance of many autonomous driving approaches,
including classic modular approaches, end-to-end trained models
via imitation learning and end-to-end trained models via reinforce-
ment learning.

Best et al. [BNP*18] presented AutonoVi-Sim, a high-fidelity
simulation platform for autonomous driving data generation and
driving strategy testing. AutonoVi-Sim is a collection of high-level
extensible modules. Similar to CARLA, it also supports specifica-
tion of vehicle sensor systems and the changing of time of day and
weather conditions, and movements of non-vehicle participants in
traffic such as cyclists and pedestrians.

In addition, several recent projects seek to build simulation plat-
forms to train end-to-end driving systems and provide rich virtual
traffic scenarios for the testing of autonomous driving. An exam-
ple project is Apollo [apo18], which incorporates a large amount of
driving data from actual traffic and virtual traffic. The goal of Apollo
is to create a powerful virtual close-loop for the development of au-
tonomous driving systems: from algorithms to evaluation, and back
to updating algorithms. One limitation of Apollo is that the virtual
traffic data are created manually with specific and well-defined ob-
stacles and traffic signals, which are less realistic and complex than
real-world traffic conditions.

Recently, Li et al. [LPZ*19] have developed a simulation frame-
work, AADS, which can augment real images with simulated traffic
flows for generating realistic-looking images. Using data from Li-
DAR and cameras, the framework can compose simulated traffic
flows, based on actual vehicle trajectories, into the background. The
composite images could be altered to different viewpoints and are
fully annotated, which are ready to be used for development and
testing of autonomous driving systems. This framework aims to

overcome the burden of manually developing virtual environments
and the degraded performance of training autonomous vehicles us-
ing virtual images.

Another framework developed by Li ef al. [LWL19], ADAPS,
takes a different perspective—enabling learning autonomous driv-
ing from accidents. The framework consists of two simulation plat-
forms. The first simulation platform runs in 3D and is used to test a
learned policy and simulate accidents; the second simulation plat-
form runs in 2D and is used to analyse an occurred accident in
the first simulation platform and resolve the accident by providing
alternative safe trajectories. A large quantity of annotated data is
then generated based on the safe trajectories for training and updat-
ing a control policy. ADAPS also represents a more efficient online
learning mechanism compared to previous techniques such as DAG-
GER [RGBI11], which can greatly reduce the number of iterations
required to derive a robust control policy.

6. Discussion
In this section, we discuss potential future research directions.

First, a traffic simulation model should be able to model as many
complex traffic behaviours as possible, while maintaining the com-
putational efficiency. However, for existing microscopic traffic mod-
els, each behaviour of the vehicle, such as acceleration/deceleration
and lane-changing, is individually modelled and controlled. In ad-
dition, microscopic traffic models focus more on the vehicle move-
ment in forward direction, which is limited in a way that lane-
changing behaviours, and vehicle lateral motions in general, are
ignored. In addition, as the motion of a vehicle is mainly affected by
its leading vehicle according to the car-following rule, the resulting
simulation rarely involves other vehicles in the field of view for
computing the acceleration/deceleration. In order to simulate more
realistic traffic flows, it is necessary to develop a unified, scalable
simulation framework for rich vehicle behaviours, including accel-
eration/deceleration, staying in lane, lane changing and interactions
with non-vehicle traffic participants (e.g. pedestrians and bicyclists).

Second, despite of many successful demonstrations, current data-
driven traffic animation approaches cannot handle non-trivial inter-
actions between vehicles and other moving objects (e.g. pedestri-
ans). One of the main reasons is that it is a daunting task to acquire
large-scale, spatial-temporal data of vehicles, pedestrians and the
environment factors at the same time. For traffic reconstruction, in-
road sensors and GPS data, as two types of traffic data, are usually
utilized separately in computation. Meanwhile, the accuracy of traf-
fic reconstruction is limited by the available data. Thus, combining
various data sources, such as in-road sensors, video streams and GPS
traces, has the potential to improve the reconstruction accuracy.

Third, regarding the evaluation of fidelity of virtual traffic, the
dictionary-based metric [CDX*18] provides a feasible solution.
However, as a common problem with data-driven methods, the qual-
ity and composition of traffic data have a direct and substantial im-
pact on the generated dictionary, therefore affecting the evaluation
outcome. In addition, this framework extracts each vehicle’s accel-
eration, velocity, relative speed and gap distance to its front vehicle
to describe the vehicle’s instantaneous states. To better capture traf-
fic patterns for dictionary learning, more features on traffic flow,
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including vehicle kinematic constraints, road restrictions and driver
characteristics should also be considered and extracted. For macro-
scopic traffic simulation, it is necessary to develop fidelity metrics
that can measure traffic flows in an aggregate fashion, including
flow density and velocity.

Finally, for autonomous driving, addressing the interactions be-
tween autonomous vehicles and other road users remains a chal-
lenge. Existing simulators consider less mutual influences between
the two parties. To give some examples, in the Apollo simulation
platform [apol8] and the work of [BNP*18], both simulations
implement two types of non-vehicle traffic participants: pedestri-
ans and cyclists. However, the behaviours of these non-vehicle
agents are pre-defined, so they cannot react to vehicles in real
time. In addition, although dynamic pedestrians are introduced in
CARLA [DRC*17], the interactions between vehicles and pedes-
trians are handled in a simple, pre-specified way: Pedestrians will
check if there are any vehicles nearby before their movements, then
continuing the movements without further checking.

7. Conclusion

Methods for modelling and simulating traffic flows have seen con-
siderable progress since their introduction nearly 60 years ago. In
Computer Graphics, various traffic simulation techniques based on
traffic flow models have been proposed in the last decade. In addi-
tion, with advancements in sensing technology, many data-driven
approaches have been proposed for developing traffic animation
and simulation. The increasing amount of traffic data from vari-
ous sensors can also contribute to the development and testing of
autonomous driving algorithms.

In this report, we survey the key traffic simulation and animation
techniques, emphasizing, but not limited to, the discussion from the
computer graphics perspective. A subset of these methods focuses
on simulating traffic flow based on macroscopic, microscopic and
mesoscopic flow models. Other methods utilize the collected traf-
fic data to reconstruct traffic, synthesize new traffic flows or learn
characteristics of various traffic patterns. Various evaluation and
validation techniques of virtual traffic are also discussed.

As an important application, recent developments in autonomous
driving using traffic simulations are also presented. Especially, we
have focused on data-driven methods, motion planning techniques,
decision-making algorithms and simulators created for autonomous
driving development. We have also explored some research chal-
lenges and future directions.

In conclusion, traffic simulation and animation will continue
to evolve and advance. Many exciting applications and novel ap-
proaches remain to be explored and developed. In terms of au-
tonomous driving research, we believe that the various models and
applications discussed in this survey would stimulate interesting
research topics for years to come.
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