

# Contributions

We propose a novel multi-task learning architecture called VP-LSTM to jointly predict the kinematic trajectories of both vehicles and pedestrians simultaneously in vehicle-pedestrian-mixed scenes:

- Vehicles are treated as rigid bodies (i.e., represented with oriented bounding boxs, OBBs) and optimized by adopting the four-variate Gaussian distribution.
- Pedestrians are treated as particles and optimized by adopting the bivariate Gaussian distribution.

We introduce a large-scale and high-quality trajectory dataset for both heterogeneous vehicles and pedestrians under different traffic densities (BJI and TJI).

# Motivations

Essential components are not well considered in existing research of trajectory prediction, especially in vehicle-pedestrian-mixed scenes:

- heterogeneous interactions: human-human, human-vehicle, and vehicle-vehicle,
- pedestrians as particles to describe their free movements,
- vehicles as rigid non-particle objects to describe their size,
- combination of positions and orientations to describe the accurate kinematic trajectories of heterogeneous vehicles.

Goal: To predict the kinematic trajectories for all heterogeneous agents in vehicle-pedestrian-mixed scenes jointly and simultaneously.



Figure: The vehicle *a* and pedestrian *b* in gray dash box have similar interactions with surrounding pedestrians. b walks freely to avoid collisions with d. However, the vehicle a, limited with kinematics, stops to avoid collisions with c.

# Joint Prediction for Kinematic Trajectories in Vehicle-Pedestrian-Mixed Scenes

Huikun Bi<sup>1,2</sup> Zhong Fang<sup>1</sup> Tianlu Mao<sup>1</sup> Zhaoqi Wang<sup>1</sup> Zhigang Deng<sup>2</sup>

<sup>1</sup>Institute of Computing Technology, Chinese Academy of Sciences <sup>2</sup>University of Houston http://vr.ict.ac.cn/vp-lstm

#### Formulation

- Pedestrians. The input/output trajectory of a pedestrian  $p^i$  ( $i \in [1,N]$ ) is a sequence formed of consecutive positions  $\mathbf{x}_t^i = (x, y)_t^i$ .
- Vehicles are represented with OBBs. The input trajectory of vehicle  $v^{j}$  ( $j \in [1,M]$ ) is noted to a temporal sequence of the four vertices on the  $P_{a}^{2}$ OBB ( $\mathbf{P}_{t}^{J} = \{\mathbf{P}_{fl,t}^{J}, \mathbf{P}_{fr,t}^{J}, \mathbf{P}_{rr,t}^{J}, \mathbf{P}_{rl,t}^{J}\}$ ). We exploit the positions  $\mathbf{y}_t^J = (x, y)_t^J$  and orientations  $\mathbf{a}_t^J =$  $(\alpha_x, \alpha_y)_t^J$  as the output trajectory of  $v^j$  at step t.



#### **Mixed Social Pooling**

 $h_{t}^{(p,i)}$  ( $h_{t}^{(v,j)}$ ) are the hidden states of  $p^{i}(v^{j})$  after LSTMs. We build occupancy map VO and PO for both vehicles and pedestrians to share interactions. The pooling occurs on vehicle  $v^{j}$  as follows:

$$H_t^{(vp,j)}(m,n,:) = \sum_{k \in PO_{t-1}^j} h_{t-1}^{(p,k)}, \quad H_t^{(vv,j)}(m,n,:) = \sum_{l \in VO_{t-1}^j} h_{t-1}^{(v,l)}.$$
 (1)

$$e_t^{(vp,j)} = \phi(H_t^{(vp,j)}, W_H^{vp}), \quad e_t^{(vv,j)} = \phi(H_t^{(vv,j)}, W_H^{vv}).$$
(2)

 $e_t^{(vp,j)}$  and  $e_t^{(vv,j)}$  are the vehicle-human and vehicle-vehicle interactions. As for pedestrian  $p^{i}$ , the human-human  $(e_t^{(pp,i)})$  and human-vehicle  $(e_t^{(pv,i)})$  interactions are obtained in a similar way.



**Recursion for VP-LSTM.** Recursion equations for pedestrian  $p^i$  and vehicle  $v^j$  are as follows:

$$h_{t}^{(p,i)} = LSTM(h_{t-1}^{(p,i)}, e_{t}^{(x,i)}, e_{t}^{(pp,i)}, e_{t}^{(pv,i)}, W_{LSTM}^{p})$$

$$h_{t}^{(v,j)} = LSTM(h_{t-1}^{(v,j)}, e_{t}^{(\mathbf{P},j)}, e_{t}^{(vp,j)}, e_{t}^{(vv,j)}, W_{LSTM}^{v})$$
(3)

#### Optimization

To train the entire network end-to-end by minimizing respective objectives:

- **Pedestrians** exploit a bivariate Gaussian distribution (d = 2) to predict the position  $\hat{\mathbf{x}}_t^i = (\hat{x}, \hat{y})_t^i$ . Optimize the mean  $\mu_t^{(p,i)} = (\mu_x, \mu_y)_t^{(p,i)}$ , the standard deviation  $\sigma_t^{(p,i)} = (\sigma_x, \sigma_y)_t^{(p,i)}$ , and the correlation coefficient  $\rho_t^{(p,i)}$  [2].
- Vehicles exploit a four dimensional Gaussian multivariate distribution (d=4) to predict the position  $\hat{\mathbf{y}}_t^J = (\hat{x}, \hat{y})_t^J$  and orientation  $\hat{\mathbf{a}}_t^J = (\hat{\alpha}_x, \hat{\alpha}_y)_t^J$ . We use the Cholesky factorization [4] to obtain the distribution by optimizing the values  $\theta_{L_t}^{(v,j)}$  in L (4 × 4 upper triangular matrix) and mean parameters.

**Displacements Prediction.** The predicted kinematic trajectories of pedestrians and vehicles at *t* are respectively given by:

$$(\hat{x}, \hat{y})_t^i \sim \mathcal{N}(\boldsymbol{\mu}_t^{(p,i)}, \boldsymbol{\sigma}_t^{(p,i)}, \boldsymbol{\rho}_t^{(p,i)}), \quad (\hat{x}, \hat{y}, \hat{\boldsymbol{\alpha}}_x, \hat{\boldsymbol{\alpha}}_y)_t^j \sim \mathcal{N}(\boldsymbol{\mu}_t^{(v,j)}, \boldsymbol{\theta}_{Lt}^{(v,j)}).$$
(4)

## **Quantitative Evaluation**

• Positions of vehicles/pedestrians: ADE, FDE.

• Orientation of vehicles: ADE<sub>O</sub>, FDE<sub>O</sub>.  $\mathbf{P}_{fm}^{j}(\hat{\mathbf{P}}_{fm}^{j})$ is the real (predicted) midpoint of the front of  $ADE_{O} = \frac{\sum_{j=1}^{M} \sum_{t=T_{obs}+1}^{T_{obs}+T_{pred}} ||\hat{\mathbf{P}}_{fm,t}^{j} - \mathbf{P}_{fm,t}^{j}||}{MT}$ OBB oriented.

|                                                | Metric           | Dataset | <b>V-LSTM</b> [1] | <b>S-LSTM</b> [1] | <b>SGAN</b> [3] | VP-LSTM     |
|------------------------------------------------|------------------|---------|-------------------|-------------------|-----------------|-------------|
| Table: Quantitative results for                | ADE              | NGSIM   | 34.01 / 40.00     | 11.73 / 15.16     | 4.56 / 6.52     | 2.19 / 2.99 |
| the vehicles only in NGSIM. Met-               | FDE              | NGSIM   | 43.87 / 52.64     | 20.03 / 23.64     | 9.13 / 10.99    | 3.70 / 5.20 |
| rics for $T_{\text{pred}} = 8/12$ are reported | ADE <sub>0</sub> | NGSIM   | 33.89 / 39.87     | 12.68 / 15.75     | 5.26 / 7.52     | 3.29 / 4.00 |
| in feet.                                       | FDE <sub>0</sub> | NGSIM   | 43.77 / 52.50     | 22.59 / 24.95     | 11.07 / 13.10   | 4.88 / 6.22 |

Table: Quantitative results for objects in BJI and TJI. Metrics for  $T_{pred} = 8/12$  are reported in pixels.

| Metric | Dataset | Agent      | <b>V-LSTM</b> [1] | <b>S-LSTM</b> [1] | <b>SGAN</b> [3] | VP-LSTM       |
|--------|---------|------------|-------------------|-------------------|-----------------|---------------|
| ADE    | BJI     | Vehicle    | 66.69 / 85.48     | 29.05 / 51.41     | 20.21 / 24.65   | 16.38 / 24.33 |
|        |         | Pedestrian | 34.70 / 48.91     | 25.26 / 46.89     | 17.82 / 20.33   | 4.92 / 6.39   |
|        |         | Average    | 44.13 / 62.09     | 26.88 / 48.49     | 18.64 / 22.53   | 8.58 / 12.72  |
| ADE    | TJI     | Vehicle    | 142.17 / 185.93   | 46.17 / 85.52     | 26.82 / 39.86   | 22.38 / 29.79 |
|        |         | Pedestrian | 115.44 / 135.97   | 41.19 / 75.55     | 19.81 / 25.89   | 7.42 / 9.12   |
|        |         | Average    | 125.27 / 154.31   | 43.13 / 79.22     | 24.42 / 34.73   | 13.43 / 17.32 |
| FDE    | BJI     | Vehicle    | 114.11 / 152.91   | 61.49 / 126.03    | 38.36 / 44.68   | 31.27 / 43.60 |
|        |         | Pedestrian | 54.64 / 81.72     | 56.93 / 111.05    | 32.57 / 40.52   | 7.55 / 10.44  |
|        |         | Average    | 72.17 / 107.38    | 58.54 / 116.47    | 35.00 / 42.62   | 15.11 / 23.47 |
| FDE    | TJI     | Vehicle    | 215.94 / 303.54   | 103.67 / 203.90   | 48.22 / 56.95   | 35.38 / 49.31 |
|        |         | Pedestrian | 156.29 / 192.92   | 92.55 / 177.10    | 39.98 / 49.31   | 10.53 / 13.90 |
|        |         | Average    | 178.21 / 233.52   | 96.91 / 186.97    | 43.42 / 55.43   | 20.51 / 27.95 |
| ADEO   | BJI     | vehicle    | 65.51 / 83.78     | 42.55 / 65.70     | 27.56/33.47     | 26.65 / 32.49 |
|        | TJI     | vehicle    | 140.52 / 183.60   | 50.35 / 88.44     | 29.69 / 38.65   | 26.15 / 33.69 |
| FDEO   | BJI     | vehicle    | 112.01 / 149.81   | 76.18 / 135.49    | 43.61 / 49.59   | 40.61 / 48.02 |
|        | TJI     | vehicle    | 213.04 / 299.39   | 105.94 / 203.24   | 50.94 / 64.49   | 38.93 / 52.73 |





# **Qualitative Evaluation**



### **Dataset Details**

#### Table: The specifications of our dataset.

|                                  | Property                  | Scenario I  | Scenario II |
|----------------------------------|---------------------------|-------------|-------------|
| Dataset name                     |                           | BII         | TJI         |
| City                             |                           | Beiiing     | Tianiin     |
|                                  | Latitude                  | 40.219049N  | 39.120511N  |
|                                  | Longitude                 | 116.220789E | 117.173421E |
|                                  | Traffic density           | Low         | High        |
| Heig                             | ght of drone (meter)      | 74          | 121         |
| R                                | Resolution (pixel)        | 3840×2160   | 3840×2160   |
| To                               | tal video duration        | 39'58"      | 22'01"      |
|                                  | Frame rate (fps)          | 30          | 30          |
| Anne                             | otated frame number       | 23498       | 8000        |
| Annotated frame rate (fps)       |                           | 10          | 6           |
| Annotated                        | Walking                   | 1336        | 690         |
| pedestrian                       | Bike & Motor              | 1689        | 2690        |
| number                           | Total                     | 3025        | 3380        |
| Average pe                       | destrian number per frame | 29          | 46          |
| Max pede                         | estrian number per frame  | 67          | 105         |
| Annotated<br>vehicle<br>number   | Auto                      | 2581        | 3523        |
|                                  | Bus & Truck               | 82          | 170         |
|                                  | Articulated bus           | 92          | 30          |
|                                  | Total                     | 2755        | 3723        |
| Average vehicle number per frame |                           | 19          | 34          |
| Max vehicle number per frame     |                           | 33          | 63          |



#### References

[1] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese. Social lstm: Human trajectory prediction in crowded spaces.

In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016. [2] A. Graves.Generating sequences with recurrent neural networks.arXiv preprint arXiv:1308.0850, 2013.

[3] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi.Social gan: Socially acceptable trajectories with generative adversarial networks.In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

[4] I. Hasan, F. Setti, T. Tsesmelis, A. Del Bue, F. Galasso, and M. Cristani. Mx-lstm: Mixing tracklets and vislets to jointly forecast trajectories and head poses. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.