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Fig. 1. We present a framework to synthesize indoor scene layouts using dynamic convolution networks,
enabling us to easily generate plausible 3D indoor scenes in irregular-shaped architecture rooms. The indoor
objects are grouped and then arranged by functional blocks. Here, we present two indoor scenes from the
top-down view of the living rooms and one of the bedrooms. In each group, the left one shows 2D functional
blocks, and the right one is the corresponding 3D scene.

Synthesizing indoor scene layouts is challenging and critical, especially for digital design and gaming enter-
tainment. Although there has been significant research on the indoor layout synthesis of rectangular-shaped or
L-shaped architecture, there is little known about synthesizing plausible layouts for more complicated indoor
architecture with both geometric and semantic information of indoor architecture being fully considered. In
this paper, we propose an effective and novel framework to synthesize plausible indoor layouts in various and
complicated architecture. The given indoor architecture is first encoded to our proposed representation, called
InAiR, based on its geometric and semantic information. The indoor objects are grouped and then arranged by
functional blocks, represented by oriented bounding boxes, using dynamic convolution networks based on their
functionality and human activities. Through comparisons with other approaches as well as comparative user
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studies, we find that our generated indoor scene layouts for diverse, complicated indoor architecture are visually
indistinguishable, which reach state-of-the-art performance.
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1 INTRODUCTION
Modeling and synthesis of structured, real, and informative indoor scenes has become a challenging
and essential task, especially for computational design, gaming entertainment, VR&AR applications,
and robotic navigation training in virtual environments [Dai et al. 2018; Lai et al. 2014; Sünder-
hauf et al. 2017; Taira et al. 2018]. Since we spend significant amount of time indoors, the indoor
scene layouts continue to attract the attention of interior design companies (e.g., IKEA, HOME-
STYLER) [Hom [n.d.]; IKE [n.d.]; pla [n.d.]], and researchers in the field of computer graphics and
vision [Li et al. 2019; Qi et al. 2018; Ritchie et al. 2019; Wang et al. 2019; Zhang et al. 2018]. The
goal of indoor scene layout modeling and synthesis is to automatically, quickly, and realistically
reconstruct virtual 3D indoor scenes, including different types of rooms (e.g., living room, dining
room, bedroom), based on our daily habits and activities.

Research has recently emerged to synthesize indoor scenes, which aims at generating plausible
arrangements of a set of objects. Although there are many effective approaches in some architectures,
it is challenging to generate an indoor layout in complicated architecture, since both the human
activities and the geometric and semantic information of indoor architecture are not comprehensively
considered.

1). Geometric and semantic information of indoor architecture
Many previous works of indoor layout modeling and synthesis [Li et al. 2019; Ritchie et al. 2019;

Wang et al. 2019] used SUNCG [Song et al. 2017], a comprehensive dataset of realistic indoor
scenes encompassing scene types (e.g., living room, bedroom, kitchen, office). The majority of
these top-down view rooms, are rectangular-shaped or L-shaped (Fig. 2). However, in reality, indoor
scenes tend to have more complicated and diverse architecture (Fig. 2(d)). Such simplifications of
the rectangular-shaped or L-shaped architecture for indoor scenes cannot satisfy various and realistic
human needs in the real world. For more complicated indoor architecture, the implied geometric and
semantic information might have a direct impact on indoor layouts. For example, a sectional sofa
usually is placed against a wall whose length is longer than the sofa. Also, the indoor lighting caused
by windows on the wall will influence the indoor layouts.

2). Human activities
State-of-the-art methods tend to arrange indoor objects one after another iteratively [Ritchie

et al. 2019; Wang et al. 2018]. However, people are more accustomed to roughly dividing the room
into several blocks based on their activities and indoor architecture, such as a reception block, a
projection block, and a dining block as illustrated in Fig. 2. After that, a group of objects will be
placed in each block. Thus, the strategy in these works, which treating objects as individuals, cannot
utilize the geometric and semantic information of indoor architecture sufficiently. Some pioneering
works [Fisher et al. 2015; Merrell et al. 2011] grouped objects with the specific functionality and
proposed to utilize indoor structured blocks to facilitate specific human activities. To describe
semantic relations among objects, some works recently exploited the spatial-based relations to
organize functional groups of objects [Li et al. 2019; Wang et al. 2019]. There are only some specific
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Fig. 2. Illustration of the statistical indoor architecture in SUNCG and our dataset. We randomly selected
400 indoor scenes from SUNCG and our dataset, respectively. The representative indoor architecture from
SUNCG is (b) rectangular-shaped or (c) L-shaped. However, indoor scenes in reality tend to have more
complicated and diverse architecture, shown in (d). The purple, green, and blue blocks refer to the projection
block, reception block, and dining block, respectively. The yellow and blue lines on the red outline of each
room represent the windows and doors, respectively.

indoor architectures and human activities being considered in the prior works, which are not sufficient
for all indoor scenes.

To address these problems, we build an effective and novel framework to generate plausible indoor
scene layouts. We assume that any indoor scene with complicated architecture is referred to as an
irregular top-down view polygon. Given an indoor architecture around with a varied number of walls,
we first encode the geometric and semantic information of indoor architecture into our proposed
representation, called InAiR. Indoor objects to be arranged are organized by functional blocks,
represented with oriented bounding boxes (OBBs), based on their functionality, human activities, and
spatial relations. Each functional block here is assumed to be relative to a wall, called anchor-relative
wall. We then employ dynamic convolution networks to predict the anchor-relative wall for given
functional blocks, based on the captured multi-level geometric and semantic features of the indoor
architecture. Then, the detailed layout of the functional block will be computed based on the selected
anchor-relative wall. The final indoor layout will be generated after replacing each functional block
OBB with a group of 3D shape objects.

The main contributions of this work include: i) we propose an intuitive, structured indoor archi-
tecture representation, called InAiR, to extract geometric and semantic information of realistic and
complicated indoor architecture quickly and automatically. To our best knowledge, we are the first to
encode the geometric and semantic information of complicated indoor architecture, not limited to
rectangular-shaped or L-shaped architecture, to generate indoor scene layouts. ii) An effective and
novel framework is built to synthesize indoor layouts of complicated architecture, which is satisfied
with human habits and activities. Using dynamic convolution networks, the generated layout can
jointly consider multi-level features. Through comparisons with state-of-the-art methods, our model
achieves superior performance, especially in various challenging realistic indoor scenes.
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2 RELATEDWORK
There has been significant research on the indoor scene layout synthesis. Prior works synthesized
indoor scene layout mainly focuses on modeling object-object relationships, as well as the occurrence
and arrangement of objects within a room. Early work adopted rule-based constraints [Xu et al.
2002] and optimization of the cost functions based on design principles [Merrell et al. 2011; Yu
et al. 2011] to model the object-object relationships. Gaussian mixtures [Fisher et al. 2015], relations
annotations [Fu et al. 2017], and graphical models [Henderson et al. 2017] are frequently used to
introduce the spatial relations of a group of objects.

With the availability of 3D indoor scene dataset (e.g., SUNCG [Song et al. 2017]), recent works
on indoor scene synthesis proposed learning-based methods. Zhang et al. utilized a human-centric
probabilistic grammar model to synthesize 3D room layouts [Qi et al. 2018]. Zhang et al. built a
generative model using a feed-forward neural network that maps a prior distribution to the distribution
of primary objects in indoor scenes for indoor environments synthesis [Zhang et al. 2018]. Other
research showed the effectiveness of image-based deep convolutional generative models on indoor
scenes generation [Ritchie et al. 2019; Wang et al. 2018]. The generative recursive autoencoders,
called GRAINS, were designed to perform indoor objects grouping in the encoding and decoding
phase [Li et al. 2019]. Combining a high-level relation graph representation with spatial prior neural
networks, Wang et al. proposed a novel “plan-and-instantiate” conceptual framework for layout
generation [Wang et al. 2019]. However, there has been little focus on synthesizing indoor scenes,
especially generating layouts with more complicated architectures, which meet human habits and
activities.

3 OVERVIEW
In this work, our goal is to build an effective and robust framework to generate plausible indoor scene
layouts, which is satisfied with diverse architecture and human living habits. A room in our work
refers to a completely enclosed space using walls, doors, and windows. Therefore, the outline of a
top-down view room may be an irregular polygon. Considering the functionality and practicability of
room types, we limited focus on living rooms, dining rooms, and bedrooms in this paper. We note
that living rooms and dining rooms usually are interconnected spaces in ground truth indoor scenes,
and such rooms are also considered in our work. Furthermore, our framework is easily extended to
more room types.

Given an indoor scene and a set of objects’ labels, our framework is decomposed into four steps.
Fig. 3 illustrates the pipeline of our framework to synthesize indoor scene layouts in complicated
architecture.

Indoor Architecture Representation. To describe the complicated indoor architecture sufficiently,
we first encode the given indoor scene with complicated architecture to a specific representation
InAiR (see Sec. 4.1). All the geometric and semantic information of dynamic walls in architecture
can be captured.

Assign Functional Blocks and Corresponding Objects. In order to describe the functionality and
spatial relations of objects, we propose to use a functional block to organize a group of indoor labeled
objects (see Sec. 4.2). Each functional block is represented by an OBB and structured to facilitate
specific human activities, based on the statistics and analysis of indoor scene layouts. For example, a
living room typically includes a reception block and a projection block, a dining room includes a
dining block, a bedroom includes a sleeping block and a wardrobe block, etc.

We enable users to design several functional blocks to be arranged based on their intents and select
the corresponding objects’ labels in each functional block. It is noted that all the indoor objects are
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Fig. 3. Overview of our framework. Given an indoor architecture, several functional blocks, a group of labeled
objects, our method encoded the indoor scene into a specific representation and organizes the objects with
functional blocks based on human activities. Considering the rich geometric and semantic information of
indoor architectures, our method proposes to exploit local and contextual features to synthesize indoor
layouts in complicated architectures.

arranged by functional blocks. We build the corresponding functional block database, where each
functional block organizes a group of 3D objects involved in certain spatial relations.

Arrange Functional Blocks. We assume that the location of each functional block is relative to
a wall, defined as the anchor-relative wall. All the anchor-relative walls for functional blocks are
computed simultaneously (see Sec. 4.2). We operate dynamic convolution networks on architecture
representation to capture multi-level geometric and semantic features of room architecture, which is
represented with an irregular polygon. The anchor-relative walls contribute to locating functional
blocks roughly. Then, the extracted multi-level features of room architecture, as well as the embedded
representation of the selected anchor-relative wall, are concatenated to compute the details of
functional block OBBs, such as relative positions, size, offset, and orientations (see Sec. 4.2). The
functional block OBBs are then arranged one after another.

Synthesize Indoor Layouts. To finalize the indoor scene layout, the generated functional block
OBBs are replaced with a 3D functional block retrieved from our functional block database based on
the functional block category including objects, and size information of the functional blocks.

4 METHODOLOGY
In this section, we describe our indoor architecture representation and present the framework for
synthesizing indoor scene layouts in complicated architecture. The main symbols and corresponding
explanations are shown in Table 1.

4.1 Indoor Architecture Representation InAiR
The rooms’ architecture is a common condition that has a considerable impact on the overall indoor
layouts. The indoor architecture representation, named InAiR, is specially proposed for a room with
around N irregular walls (including the main wall, and partition wall, etc.). Each wall has both
geometric and semantic information.

Each top-down view room is referred to as an irregular polygon, whose outline represents the
walls of the room. For any wall i,(i ∈[1,N]) of room τ , its geometric information includes length li
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Fig. 4. Architecture of our network to generate functional block OBBs. The geometric and semantic informa-
tion of the indoor architecture is extracted, encoded, and concatenated, shown in the yellow shaded region,
which is then fed into the following anchor-relative wall module. We predict the anchor-relative wall for
the corresponding functional block to be arranged, shown in the blue shaded region. Using the encoded
information of the selected anchor-relative wall and the embedded geometric and semantic information of
the indoor architecture, we predict the corresponding relative position, size, offset, and orientation of the
functional block, shown in the purple shaped region.

Symbol Explanation
τ Room
N The number of walls.
ei

g The geometric information of wall i.
ei

s The semantics of wall i.
ei The geometric and semantic embedding of wall i.
M The number of functional blocks.
Eτ The embedded architecture of room τ .
Cτ The extracted features of room τ after filters and max-pooling.
γ Functional block
Iγ The selected anchor-relative wall for the functional block γ .
Oγ The corresponding OBB for the functional block γ .

Table 1. The main symbols and corresponding explanations.

and positions, referring to 5 real numbers. It is noted that the wall with a door will be divided into
two walls, as shown in Fig. 4. The position is represented with its endpoints (xi

0,y
i
0) and (xi

1,y
i
1). The

semantic information is represented with 13 binary indicators (4 bits for the type of walls; 8 bits for
the type of connected rooms; 1 bit for windows on the wall). Namely, representation information for
each wall is stored in an 18-dimensional vector. Therefore, the architecture of this room is represented
with Xτ ∈ R18×N .
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Table 2. The functional blocks and some corresponding objects. Based on the statistical results of our dataset,
we show that there are three main functional blocks in the living and dining room. They are reception blocks,
dining blocks, and projection blocks. The representative functional blocks in bedrooms are sleeping blocks
and wardrobe blocks.

4.2 Functional Block Module
Indoor scenes often contain functional groups of objects, which are structured to facilitate specific
human activities. In our work, we refer these grouped objects to functional blocks, represented with
OBBs. Based on the statistical results of our dataset and room types, we show all the functional
blocks appeared in our synthetic indoor scene and some corresponding objects in Table 2. Given an
input of an indoor scene and a set of objects’ labels, we encourage users to design several functional
blocks and assign the corresponding objects to each functional block based on their intents and
activities. All the indoor objects are arranged by functional blocks. We assume that there are M
functional blocks to be arranged in the room τ .

A functional block is placed based on its relative position, size, offset, and orientation information.
We assume each functional block is relative to a wall, named anchor-relative wall. For example, a
projection block including TV and a reception block with sofa in the living room are likely to be
placed adjacent to a wall; all beds in sleeping blocks have at least one side leaning against a wall, etc.

Based on our proposed indoor architecture representation InAiR, we exploit dynamic convolution
networks to predict anchor-relative walls for all the functional blocks simultaneously. Next, the
functional block OBBs, including detailed position, size, offset, and orientation information relative
to the respective predicted anchor-relative wall, are generated. Finally, each designed functional
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block OBB is replaced with a corresponding 3D functional block retrieved from our functional
block database based on the functional block category including objects, and size information of the
functional blocks.

We exploit a hierarchical clustering method to create functional blocks other than grouping objects
manually. Based on the definition of functional blocks, a group of objects are clustered into a
functional block according to their spatial relations and human activities with respect to these objects.
We use linkage criteria to get the smallest cluster distance among these objects. The clustering
process will not stop until the cluster’s diameter of a cluster exceeds the pre-defined threshold.

Anchor-relative Wall. To deal with the effect of indoor architecture, we arrange each functional
block based on the combination of the geometric information of each wall and the contextual semantic
information of a set of sequential walls. For example, a long sofa bed fails to be placed against a
wall with length that is shorter than the length of the sofa, and the arrangement of a corner sofa relies
on the contextual semantic information of the two adjacent walls. We divided the features of the
indoor architecture into two categories: local features and contextual features. We utilized dynamic
convolution networks to capture the local features and contextual features of the indoor architecture.
The dynamic convolution operation is frequently used in natural language processing (NLP) to induce
lexical-level automatically and sentence-level features from plain texts for event extraction [Baevski
and Auli 2018; Chen et al. 2015; Kim 2014; Kim et al. 2016; Zhang and Wallace 2015]. Inspired
by these works, we employ multiple dynamic convolution networks to obtain valuable multi-level
features within architecture.

We used five variables to describe the geometric information of each wall in the room, which
contains more diverse latent information than the semantic binary indicators. Given the architecture
representation Xτ ∈ R18×N of room τ , the geometric information of wall i are first embedded into a
high-dimensional space ei

g. The semantics of wall i is transformed into a low-dimensional embedding
ei

s. The geometric and semantic embeddings are then concatenated as the input ei of the following
modules, as shown in Fig. 4. The embedded architecture of room τ is Eτ with shape of h×N.

The convolution layer aims to capture multi-level compositional semantics of a group of walls
and compress this valuable information into feature maps. Here, a convolution operation involves n
filters (size of h×w), which is applied to a window of w walls to extract a new semantic feature1.
Each filter is operated on the whole information of several geometrically consecutive walls. The
shape of the feature after every n convolution filters with a fixed w for room τ is 1×N ×n. In order
to consider different level semantics of architecture, we utilize a set of filters with a window size
w ∈ { f1, f2, ..., fm} for convolution.

As the shape of the feature after convolution is varied with the number of walls (N) in τ . We then
take a max-pooling to extract the most valuable information from N walls. Using the max-pooling,
the features of the varied architecture in each dynamic convolution network are transformed into a
1×1×n feature. Therefore, the concatenated features after filters with size w ∈ { f1, f2, ..., fm} and
max-pooling can represent the multi-level geometric and semantic features of the architecture. We
reshape it into a vector with a shape of mn×1, denoted by Cτ . The dynamic geometric and semantic
information of indoor architecture is turned into fixed dimensions.

For the functional block γ (γ ∈ 1,M) to be arranged in room τ , we feed the vector after two fully
connected layers into a softmax layer. We compute the probabilities of each i to be the anchor-relative

1In order not to lose the information on the edge of Eτ , for any wall i (when i < ⌈w
2 ⌉), we sequentially pad the embedded

information of the adjacent ⌈w
2 ⌉− i walls for wall i. Similarly, when i > N −⌈w

2 ⌉, the embedded information of the adjacent
⌈w

2 ⌉ i−N walls for wall i will be padded for subsequent wall N.
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wall. To predict the anchor-relative wall for the functional block γ in room τ , we employ the cross-
entropy loss: Lanc = ΣM

γ=1Σ
N
i=1(pi,γ

anc − p̂i,γ
anc)2, where pi,γ

anc is the ground truth, and p̂i,γ
anc is predicted

probability of wall i that is the anchor-relative wall for the functional block γ .

Generate Functional Block OBBs. We use OBBs to represent functional blocks. Based on the
selected anchor-relative wall Iγ for the functional block γ , we compute the relative position, size,
offset, and orientation information of the functional block γ to place the corresponding OBB Oγ .

sj sj+1sj−1

w
OBB

lOBB

segment segment segment

θ

anchor-relative wall Iγ

do v

do h

2π

Fig. 5. Illustration of a functional block OBB respect to the predicted anchor-relative wall. The dining block,
used as an example, comprises four chairs and a dining table.

The arrangement of Oγ respect to Iγ needs to take the overall architecture of τ into consideration,
as well as the local information of Iγ . Therefore, the embedding of Iγ with semantic and geometric
information, which is denoted by eIγ

, is passed into a fully connected layer, and then concatenated
with Cτ , which carries the overall architecture semantics of τ . After two fully connected layers, the
vector is passed to the output layer.

To arrange Oγ more accurately, we divided the anchor-relative wall Iγ into t segments, shown in
Fig. 5. We predict each probability of Oγ in segment s j with j ∈[1, t], respectively, as well as the
size, offset, and orientation of Oγ in the segment with the highest probability. We described a OBB
using the width wOBB and the length lOBB. We introduce the offset with two offset values–one (i.e.,
do_h) in horizontal direction, and the other (i.e., do_v) in vertical direction, as shown in Fig. 5. The
orientation is encoded using a 5-bit one-hot vector and a parameter θ ∈[0,1] (that is a real number).
The first 5 bits are designed to indicate whether the functional block OBB is oriented at an angle of
0, π

2 , π , 3π

2 – respect to the anchor-relative wall Iγ –or none of the above, where pk
ori with k ∈[1,5]

denotes each bit. In the oriented case (i.e., k = 5), the functional block will be rotated 2πθ (unit: rad)
about the center (Fig. 5).

There are four loss terms when generating functional block OBBs. We noted that the variables
with a hat denote predicted values, and that without a hat denote ground truth. The losses for size,
offset, and orientation of Oγ only focus on the OBB in the segment with the highest probability. We
predefined the function Φ(a,b)=(

√
|a|−

√
|b|)2.

• We use cross-entropy loss to show the probabilities in all segments: Lp = Σt
j=1 (p j

seg − p̂ j
seg)2,

where p̂ j
seg is the predicted probability of Oγ located in segment s j.
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• Loss of the OBB’s size: Lsize = Σt
j=11

ob j
j (Φ(w j

OBB, ŵ
j
OBB) + αΦ(l j

OBB, l̂
j
OBB)), where 1ob j

j de-
notes the functional block OBB Oγ appears in segment s j.

• Loss of the OBB’s offset: Loffset = Σt
j=11

ob j
j (Φ(d j

o_h, d̂
j
o_h) +βΦ(d j

o_v, d̂
j
o_v)).

• Loss of the OBB’s orientation is the sum of a cross-entropy loss and a reconstruction loss:
Lori = Σt

j=11
ob j
j (Σ5

k=1(p j,k
ori − p̂ j,k

ori)
2) + ηΣt

j=11
ob j
j Φ(θ j, θ̂ j).

Finally, the total loss of the network for generating each functional block OBB Oγ respect to the
corresponding selected anchor-relative wall Iγ is defined as follows:

Ltotal = Lp + µ1Lsize + µ2Loffset + µ3Lori, (1)

where µ1, µ2, and µ3 are the balance controllers.

4.3 Synthesize Indoor Layouts
We used the function block OBB’s given size information to iteratively detect the existence of
collision between the functional block OBB and the existing functional block OBBs. Our collision
detection involves both broad phase and narrow phase. We begin by the broad phase, which used
AABB (Axis-Aligned Bounding Box) to detect any possible collision. If a collision exists, SAT
(Separating Axis Theorem) is then used for further detection [Bergen 2003]. When the collision had
been detected, we would resample another anchor-relative wall and OBB’s information (size, offset,
and orientation). After arranging all the functional block OBBs, we prepared some 3D functional
blocks as candidates using the functional block category including objects via a nearest neighbor
search.

5 EXPERIMENT
In this section, we compared our method with the state-of-the-art methods and present quantitative
and qualitative evaluation results. In our work, we trained our model on the 3D-Front dataset2. We
used 5000 epochs to train the anchor-relative wall module and 3000 epochs to train the functional
block OBB module. And we chose µ1 = 0.5, µ2 = 0.5, and µ3 = 0.3 for (1). We summarize the
additional details of the network in Table 3. The model was trained on a server with two P100
graphics cards and a 16-core CPU @2.50GHz. The training process took about 10 hours.

5.1 Results of Functional Blocks
Fig. 6 shows the predicted results of the anchor-relative wall, when arranging a reception block in a
living room with distinct irregular-shaped architecture. Qualitatively, our method does a good job
of predicting the anchor-relative wall, where the reception function area is located against all walls
in various real complicated architecture. We note that it is essential and necessary for arranging the
reception blocks with a specific size.

Fig. 7 shows the predicted results of the reception block in living rooms with various indoor
architecture. We found that the location and size of our predicted functional blocks are plausible. We
noted that in the cases with incorrect labels caused by manual labeling, our method still can generate
robust and reasonable layout results, as shown in Figs. 7(d), 7(g), and 7(h).

Fig. 8 shows the comparison of the 2D layout of two living-dining rooms, which involve dining
blocks, reception blocks, and projection blocks to be arranged. Each comparison is shown side by
side: the left one is our synthesized layouts, and the right one is the one designed by designers. We
found that the significant factors–architecture, semantics, and human activities–have been taking into
accounts in our synthesized layouts, which is consistent with the intention and ideas of designers.

2The information of 3D-Front dataset can be found online at https://tianchi.aliyun.com/specials/promotion/alibaba-3d-scene-
dataset
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Layer Type Input (dimensions) Output (dimensions) Additional Parameters

Indoor Architecture Representation

Fully-connected -

Fully-connected -

Concat. -

Dynamic Convolution and Max-pooling
(The parameters of only one dynamic convolution and max-pooling module are shown here. The filter size of each convolution is different, referred to .

We separately employ modules to extract features.)

Convolution
act:=ReLu, kernel:= ,

stride:=(1,1), filter number:=200

1 Max-pooling

Concat. -

Reshape -

Anchor-relative Wall

Fully-connected uLeR=:tca

Fully-connected
act:=ReLu, for living and dining room, nr = 36;

for bedroom, nr = 18

Softmax -

Functional Block OBBs

Fully-connected uLeR=:tca

Concat. -

Fully-connected uLeR=:tca

Fully-connected uLeR=:tca

Fully-connected & Softmax 01=t

Fully-connected -

Fully-connected -

Fully-connected & Softmax -

Fully-connected -

-

Table 3. Detailed architecture of our network.

predicted anchor-
relative wall

Door
Window

（a） （b） （c） （d）

（e） （f） （g） （h）

Fig. 6. The illustration of the predicted anchor-relative walls for arranging the reception blocks with our
method. The red lines represent the wall. The yellow lines indicate the predicted anchor-relative wall and the
blue arrows indicate the center and orientation of the corresponding anchor-relative walls. We note that our
method can accurately predict anchor-relative walls in quite complicated architectures, which is consistent
with the ground truth.

5.2 Synthesizing New Indoor Layouts
We compare our method with Fast & Flexible method [Ritchie et al. 2019] and present some synthetic
indoor layouts for living and dining rooms and bedrooms in Fig. 9. As compared in the top three
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predicted anchor-
relative wall

Door
Window

predicted 
functional blocks

ground truth
functional blocks

（a） （b） （c） （d）

（e） （f） （g） （h）

Fig. 7. Illustration of the predicted reception blocks with our method. The gray rectangles represent the
manually labeled locations of the reception blocks, and the red arrows represent where the labeled blocks
are pointing to each of the corresponding anchor-relative walls. The red rectangles represent the predicted
results by our method. The green arrows and the blue arrows indicate the predicted top two segments to
arrange blocks.

sofa

sofa
side 
table

side 
sofa

table
chair

chair
chair chair

chair chair

table

tableTVTV
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sofa

sofa

table

table

chair

chair

chair

chair
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side
table

TVsofatable

table

chair

chair

chair chair

side 
sofa

side 
sofa side 

lamp

TV

（a） （b）

Door

Window

Ours(2D) Ground truthGround truthOurs(2D)

Fig. 8. Comparisons of our 2D synthesized indoor layouts and the ground truth. There are dining blocks,
reception blocks, and projection blocks to be arranged. In each comparison, the left one is our synthesized
layouts and the right one is the one designed by designers.

rows in Fig. 9, Fast & Flexible method fails to generate plausible indoor layouts of complicated
architecture. By an iterative strategy to arrange objects one after another, Fast & Flexible was unable
to compute reasonable arrangement of some given objects (Fig. 9(a)). Some objects are placed in the
center of the room (Fig. 9(c)), neglecting spatial relations. Using multi dynamic convolution networks,
our proposed method can capture multi-level features of the indoor architecture. Our synthetic indoor
layouts are more plausible and reasonable for indoor scenes with complicated architecture. More
synthesized 2D and 3D indoor layouts in Fig. 10 and Fig. 11.

5.3 Paired Comparison User Study
We designed a paired comparison user study to evaluate the synthetic indoor layouts using our
method. We randomly selected 58 scenes, including 40 living & dining room, and 18 bedrooms. We
generated top-down view images for this user study which combined with the other two groups of
scenes, respectively. This yield 2×58 comparison pairs (ours vs. ground truth and ours vs. fast &
flexible, respectively), scenes from one pair are based on the same outline.
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Ours (3D)Ours (2D) Fast & Flexible Ground truth

Ours (3D)Ours (2D) Ground truth Ours (3D)Ours (2D) Ground truth

(a)

(b)

(c)

Reception Block

Dining Block

Projection Block

Door

Window

Fig. 9. Comparisons of synthesized indoor layouts. Our 2D, 3D generated results are compared with Fast &
Flexible [Ritchie et al. 2019] method and ground truth in the top three rows. The bottom three rows illustrate
additional compared examples.

Room type Ours vs.

Fast & Flexible Ground truth

Living and dining 65.00 ± 13.51 41.00 ± 8.38
Bedroom 63.89 ± 14.75 41.67 ± 11.45

Table 4. The experimental results of our user study that indicates the distribution of the percentage (±
standard error) of forced-choice comparisons.

We recruited 2×10 participants for these two comparisons, who are all graduate students in the
university, to participate in our paired comparison user study. Avoiding making forced and inaccurate
perception votes, they are required to perceptually select which functional block and the overall
layout are more plausible based on the given two top-down view rendered scenes. To avoid the effect
of material or texture appearance, the objects rendered in compared scenes here are shown with
solid colors. We use one-sample t-tests to determine the Confidence Interval (CI), and paired-sample

13



I3D’21, April 20–22, 2021, New York, NY H. Jiang et al.

Ours (3D)Ours (2D) Ours (3D)Ours (2D) Ours (3D)Ours (2D)

Reception Block Dining Block Projection Block Door WindowSleeping Block Wardrobe Block

Fig. 10. Additional synthesized 2D and 3D indoor layouts.

Fig. 11. Additional synthesized 3D indoor layouts.

t-tests to compare the difference of the true mean of two sets of data with 95% confidence. The
conventional significance for the entire analysis was determined at α = 0.05, two tailed.

Table 4 shows the participators’ preference between the compared scenes. Compared with the
Fast & Flexible, our results are preferred for both types of rooms. We found that our method is
more robust when synthesizing indoor layouts of more complicated and challenging architecture.
Comparing with the professionally designed scenes produced by layout designers, our method is
less preferred instead. We suggested that this might be caused by a more accurate location of objects
(e.g., beds are usually leaning up against a wall closely without any gaps), which is more visually
sensitive to humans, especially in 2D top-down view plans. Producing all the accurate locations for
all the objects is still challenging.

We conduct the second user study to verify our analysis. Ten participants (who have not participated
the previous user study) were required to rate 40 3D indoor layouts with a random order on a scale of
1 to 5, 1 means the least plausible, and 5 means the most plausible). The layouts to be rated include
20 of our synthetic results and the corresponding ground truth, which comprise 15 living-dining
rooms and 5 bedrooms. In the living and dining room, the mean of the raw scores for our method
is 3.59± 0.79, and the mean of the ground truth is 3.75± 0.72. In the bedroom, the mean of the
raw scores for our method is 4.12± 0.66, and the mean of the ground truth is 4.14± 0.58. The
experimental results show that the proportion of ours is 48.89%±10.72% in living-dining rooms
and 49.88%± 8.05% in bedrooms. From this experiment, we found that there is no evidence of
significant preference for the layout results produced by professional layout designers.

From the two user studies, we observed that: (1). Due to the human sensitivity and subtle differ-
ences, users are capable of selecting a better result in a paired comparison of the two layout results,
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which makes it challenging to produce highly accurate and robust indoor layouts in complicated
architectures. (2). However, the layout results using our method is preferred compared to the fast &
flexible (i.e., the state-of-the-art method). (3). Additionally, when we randomly mixed our synthetic
indoor scene results with the professionally designed layouts, the two types of results were given
a very consistent evaluation, indicating that our synthetic results are visually consistent and highly
acceptable for the participants.

6 CONCLUSION
In this paper, we focus on indoor scene layouts synthesis in complicated architecture. Unlike the
previous works generating indoor layouts in rectangular or L-shaped rooms, we propose an intuitive,
and structured indoor architecture representation, called InAiR, to extract geometric and semantic
information of indoor architecture. The outputs of InAiR are then used in an effective and novel
framework that is built to synthesize indoor layouts, where we employ dynamic convolution networks
to capture local and contextual multi-level features of the indoor architecture. The objects to be
arranged are organized into functional blocks, which facilitate specific human activities and habits.
To our best knowledge, for the first time, we synthesized indoor layouts for complicated architecture.
Through comparisons with state-of-the-art methods, our model achieves superior performance,
especially in various challenging realistic indoor scenes.

In future work, adopting deep learning models with stronger representative capabilities might
further improve our results, such as the dynamic aggregation convolution method proposed by Chen
et al [Chen et al. 2020]. Due to the complexity of the human activities, it might also help considering
both the macro-arrangement of furniture from a functional point of view and the indoor decoration
style to meet human needs.
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