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Abstract—Most of existing traffic simulation methods have been focused on simulating vehicles on freeways or city-scale urban

networks. However, relatively little research has been done to simulate intersectional traffic to date despite its broad potential

applications. In this paper, we propose a novel deep learning-based framework to simulate and edit intersectional traffic. Specifically,

based on an in-house collected intersectional traffic dataset, we employ the combination of convolution network (CNN) and recurrent

network (RNN) to learn the patterns of vehicle trajectories in intersectional traffic. Besides simulating novel intersectional traffic, our

method can be used to edit existing intersectional traffic. Through many experiments as well as comparative user studies, we

demonstrate that the results by our method are visually indistinguishable from ground truth, and our method can outperform existing

methods.

Index Terms—Traffic simulation, crowd simulation, data-driven, deep learning, intersectional traffic

Ç

1 INTRODUCTION

VIRTUAL traffic has been increasingly used in urban plan-
ning, computer games, urban network visualization,

virtual reality, and auto-driving applications in recent years.
In particular, with the rapid development of digital earth
(e.g., Google Maps and Virtual Earth) and smartphone tech-
niques, more and more real-world traffic data can be effi-
ciently collected for traffic visualization and simulation
applications [1].

Most of existing traffic simulation methods have been
focused on simulating vehicles on freeways or city-scale
urban networks, using either macroscopic models (e.g., [2],
[3]) or microscopic models (e.g., [4], [5], [6], [7]), to generate
vehicle trajectories. However, to date relatively little
research has been done to simulate intersectional traffic. For
instance, in the work of [8] and some well-known traffic
simulators [9], [10], the simulation of intersectional traffic is
over-simplified into a queue system, which clearly falls
short of modeling complex real-world intersectional traffic.
The vehicles simulated in SUMO [10] drive along well-
defined lanes (Fig. 1d) and follow car-following rules. Com-
pared to ground truth intersectional traffic (Fig. 1a), the

trajectories simulated by SUMO (Fig. 1b) are too regular,
lacking of flexibility and diversity.

Intersectional traffic simulation often needs to handle het-
erogeneous vehicles mixed with pedestrians. Some human
trajectory prediction methods (e.g., [11], [12], [13], [14], [15])
in crowded space treat each object as a point in the model.
Various deep learning models learn human-human interac-
tions based on hidden states in the network and assume that
each object has similar behavior patterns. However, the
dynamic behaviors of vehicles and those of pedestrians are
significantly different, in particular, when crossing intersec-
tions. Therefore, the above methods cannot be directly
applied for intersectional traffic simulations without consid-
erable efforts.

On the one hand, road intersections play an important
role in real-world traffic phenomena; on the other hand, the
difficulty of simulating realistic intersectional traffic has
been well recognized in the community. Arguably, the main
reasons for such a challenge are: (i) Due to the lack of clearly
defined lanes, vehicles in intersectional traffic have more
flexible trajectories than those driving along well-defined,
unidirectional lanes. (ii) Intersectional traffic simulations
involve many more dynamic environment factors, including
heterogeneous vehicles mixed with pedestrians, than free-
way traffic simulations.

Inspired by the above challenges, we propose a novel
deep learning-based framework to simulate and edit inter-
sectional traffic (refer to Fig. 1c). Specifically, we first con-
struct a high-quality intersectional traffic dataset. Then, our
intersectional traffic simulation framework consists of two
main stages. (i) At the first stage, we process the inter‘-
sectional traffic data and convert it into a compact yet
effective representation for deep learning, including the
introduction of a novel grid coordinate system to encode
dynamic intersectional environment and vehicle-vehicle
interactions. With respect to the complexity of the involved
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vehicles, our representation can handle heterogeneous
vehicles mixed with pedestrians. (ii) At the second stage,
we employ the combination of convolution neural network
(CNN) and recurrent neural network (RNN) to learn the
Forward Difference (FD) velocities of vehicle trajectories in
intersectional traffic. The trajectories learned from our
model are more realistic and collision-free. Based on the
predicted FD velocities of each vehicle, we further use a
geometric method to obtain its Central Difference (CD)
velocities.

Through many experiments as well as comparative user
studies, we demonstrate that our approach can generate
more realistic traffic in intersections than existing traffic sim-
ulators. Besides simulating novel intersectional traffic, we
also demonstrate how our method can be used to edit exist-
ing intersectional traffic, including traffic simulation in inter-
sections with new terrain and the trajectories of selected
vehicles. Fig. 2 shows some example results by our approach:
a 3D intersectional traffic simulation with a street view and
an edited traffic animationwith a bird’s-eye view.

To the best of our knowledge, this work is the first
reported system to simulate intersectional traffic without
lanes and handle vehicle trajectories mixed with pedestrians
in intersectional areas. The specific contributions of this
work can be summarized as follows:

� A new data representation tailored for deep learning is
introduced to encode heterogeneous vehicles mixed

with pedestrians in intersectional traffic, which embeds
vehicle-vehicle interactions.

� A deep learning-based framework is proposed to
learn vehicle trajectory patterns in intersections.

� A new user editing technique is introduced to effec-
tively edit specific vehicles in intersections.

2 RELATED WORK

In this section, we first survey the existing rule-based and
data-driven traffic simulation methods. Next, we review
recent research efforts on intersectional traffic simulation.
Finally, we survey human trajectory prediction methods
with deep learning networks.

2.1 Traffic Simulation

Due to the ubiquity of traffic in the real world, many traffic
simulation techniques have been proposed during the past
decades. Generally speaking, there are three types of traffic
simulations based on the level of simulation details: micro-
scopic, mesoscopic, and macroscopic. Also known as agent-based
methods, microscopic simulation treats each vehicle as a dis-
crete autonomous agent with pre-defined rules [16], [17], [18],
[19]. In particular, the Intelligent Driver Model (IDM) [6] and
lane-changing model [20] are two notable methods. Existing
microscopic methods have been recently improved to gener-
ate more flexible continuous traffic flow [5], [21]. Mesoscopic
methods use Boltzmann-type mesoscale equations to simulate
traffic dynamics [18], where traffic flow is viewed as contin-
uum dynamics like fluid or gas. Therefore, nonlinear scalar
conservation law or other second-order systems of equations
derived from the equations of gas dynamics can be used to
describe the regulations of vehicles [2], [17], [22], [23], [24]. A
recent extension of macroscopic methods [3] can animate
detailed traffic flow. However, these techniques have been
primarily focused on traffic simulation on freeways. As a
result, most of the traffic simulations studied by them are the
decision-making of acceleration/deceleration in car-following
or lane-changing scenarios.

Ignoring context-adaptive characteristics during driving,
the rule-based methods mentioned above often fall short of
simulating realistic traffic due to the inherent simplicity of
pre-defined rules. To address the limitation, researchers
have explored data-driven techniques in traffic simulation in
recent years [25], [26], [27], [28], [29], [30]. With the concept
of “virtualized traffic”, Sewall et al. [31] reconstruct traffic
flow with individual-specific driving characteristics learned

Fig. 1. (a) The ground truth data of traffic trajectories in an intersection. (b)
An example of intersectional traffic simulation by the well-known traffic
simulator SUMO [10]. (c) The traffic trajectories generated by our
approach. (d) Pre-defined lanes driving along by vehicles in SUMO.
Different trajectories are plotted with different colors.

Fig. 2. Example results by our approach: 3D intersectional traffic simulation with a street view (left) and the edited traffic with a bird’s-eye view (right).
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from spatio-temporal data acquired with sensors. Wilkie
et al. [4] use an agent-based traffic simulator to generate traf-
fic animations to match the preset sparse traffic conditions
statistically. A video-based approach by learning the specific
driving characteristics of drivers was proposed in [32]. The
works of [33], [34] reconstruct and visualize city-scale traffic
animations through statistical learning. In the work of [35], a
data-driven framework is introduced to perform the deci-
sion-making and execution processes for lane-changing in
traffic simulations. In addition, some recent efforts have been
conducted to simulate mixed traffic (i.e., mixing vehicles/
motorcycles or pedestrians) [36], [37].

Compared with traffic simulations on freeways, very few
studies on intersectional traffic simulation have been con-
ducted partially due to the lack of any publicly available
intersectional traffic datasets. Specifically, in the few existing
works of [8], [9], [10], vehicle trajectories through intersec-
tional areas need to be pre-defined, and signal-controlled
queues are built for vehicles to drive along with different
directions. Not surprisingly, they fall short of generating
realistic intersectional traffic due to their fundamental
dependence on empirically pre-defined rules.

2.2 Crowd Editing

In recent years many approaches have been proposed to
interactively edit crowds or the motions of multi-characters.
Kwon et al. [38] use a graph structure to edit crowd groups,
where the vertices denote the positions of individuals at spe-
cific frames, and the edges encode neighborhood formations
and moving trajectories. Later, researchers further extended
this technique to interactively manipulate the synchronized
motions of multi-characters in more complex scenarios [39],
[40]. Kulpa et al. [41] proposed the imperceptible relaxation
of collision avoidance constraints for interactive virtual
crowd editing. Kim et al. [42] employ a cage-based method
for large-scale crowd editing, where animators are allowed
to edit existing crowd animations intuitively with real-time
performance while maintaining complex interactions
between individuals. A novel local interaction algorithm
with a new context-aware, probabilistic motion prediction
model for crowd simulators is proposed in [43]. Karamouzas
et al. [44] proposed a simple and effective optimization-based
integration scheme for implicit integration and apply this to
crowd simulations. Whether and how the above crowd edit-
ing methods can be robustly generalized to traffic animation
editing (in particular, intersectional traffic animation) has not
been experimented and validated.

2.3 Human Trajectory Prediction

Predicting human motion behavior is a critical yet challeng-
ing task in the domains of video understanding and auto-
nomous driving. The key problem that human trajectory
prediction in a crowded space needs to handle is to analyze
human-human interactions. The works of [45], [46] use
Gaussian Processes and Bayesian nonparametric
approaches, respectively, to learn the motion trajectories of
pedestrians in the video. These learned motion trajectories
avoid obstacles but ignore human-human interactions. By
inferring traversable regions using semantic scene informa-
tion, Kitani et al. [47] forecast the future trajectories of

pedestrians. Alahi et al. [12] proposed a social pooling layer
to encode human-human interactions to predict human tra-
jectories. This work has been extended in [48], [49] to
include static obstacles and dynamic agents. But only the
dynamic agents in the neighborhood are considered. Fer-
nando et al. [50] use the Long Sort Term Memory (LSTM)
framework to predict human trajectories and consider all
agents in the environment. Gupta et al. [14] proposed social-
GAN, a recurrent sequence-to-sequence model, to predict
the trajectories of pedestrians. In their method, a novel pool-
ing mechanism is introduced in the network to aggregate
information across people. However, all the above human
trajectory prediction works treat each subject as a point and
assume that each subject during prediction has similar
behavior patterns. By contrast, the behaviors of vehicles in
an intersection react not only to heterogeneous vehicles but
also to pedestrians. As a result, these methods cannot be
directly applied to intersectional traffic simulations.

3 OUR APPROACH OVERVIEW

Our framework consists of three main steps: data acquisi-
tion and processing, trajectory learning, and simulation pro-
cess described below. Fig. 3 shows the schematic view of
our framework.

Data Acquisition and Processing. After intersectional traffic
video data acquisition and processing (detailed in Section 4.1),
we further convert the data to a format particularly tailored for
deep learning (Section 4.2). Different from traffic simulations
on freeways, the vehicles in an intersection do not have
strictly-defined lanes to follow and have a high readiness to
respond to potential unanticipated events. The characteriza-
tion of heterogeneous vehicles mixed with pedestrians also

Fig. 3. Schematic illustration of our deep learning based framework for
intersectional traffic simulation and editing.
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makes various existing traffic data representations that are
originally designed for freeway traffic simulations unsuitable
for our work. In order to address this issue, we introduce a
grid coordinate system called grid map to encode the relevant
driving information of heterogeneous vehicles (Section 4.2). A
windowwith five channels sliding on the gridmap can gener-
ate an environment matrix for each vehicle. In addition, the
destination of a vehicle and its current driving states together
are called vehicle identity (Section 4.2), which can also affect its
trajectory passing through an intersection. The environment
matrices together with the vehicle identities are inputs to the
followingmodules.

Trajectory Learning. Based on the above inputs, we first
build a CNNwith three convolution layers and three pooling
layers (Section 5.1) to reduce the dimension of the environ-
ment matrices. Then, with the environment feature vectors
outputted from the CNN as one of the inputs, we train a two-
stack-layers RNN, with LSTM as thememory cell to store the
long term task-relevant data, to learn the FD velocities of
vehicle trajectories (Section 5.2). Besides the FD velocities in
trajectory, the CD velocities of each vehicle also need to be
considered. Due to physical rules, each vehicle cannot drive
towards any direction instantly. In this work, we choose to
use the tangential vector of the vehicle’s historical driving
path to approximate its current CD velocities (detailed in
Section 5.4).

Traffic Simulation and Editing. After the above deep learn-
ing model is learned (Section 5.3), we can simulate and edit
intersectional traffic (Section 5.5). Given the initial states
of an intersection, our framework can simulate the traffic
until all the vehicles drive through the intersection. Also, by
allowing users to edit vehicles (e.g., add new vehicles,
remove existing vehicles, or modify the trajectories of some
vehicles), our method can be directly used to generate new
traffic simulations in the intersection. In this process, the tra-
jectories of the edited vehicles and those of the neighboring
vehicles are re-calculated by our method.

4 TRAFFIC VIDEO DATA ACQUISITION

We recorded a video dataset containing vehicles’ trajectories
at a city intersection. The intersectional area was approxi-
mately 96 meters � 54 meters. We used a drone to hover at
72 meters above the intersection, as statically as possible, to
record vehicles and pedestrians passing through the area
from a top-down view. A total of 2,611 seconds of video data
with a 30 fps frame rate was acquired.

4.1 Trajectory Data from Traffic Video

In order to obtain accurate vehicle trajectories from the
acquired video data, we employed a visual tracking algo-
rithm, the Multi-Domain Convolutional Neural Networks
(MDNet) [51], to track the locations of vehicles and pedes-
trians in each video frame. We used the center of the track-
ing box of each vehicle or pedestrian as its location. After
the automated video tracking, we also manually checked
and corrected any mis-tracked places for every frame to
ensure the data quality. The size of the vehicles that are
specifically studied in this work is approximately 4.5
meters in length and 2 meters in width, since such vehicles

(e.g., sedans and sports utility vehicles) widely exist in
real-world daily traffic. Other vehicles including buses
and articulated buses are not considered in this work due
to their significantly different driving patterns in intersec-
tions. To this end, the obtained dataset contains 26,110
frames of vehicle trajectory data, down-sampled to 10
frames per second.

Also, traffic light plays a key role in traffic intersections.
However, the goal of this work is to learn the driving pat-
terns of vehicles with the assumptions of the no-lane-con-
straint and heterogeneous traffic agents. The traffic light can
be treated as a separate constraint in our simulations. Fol-
lowing the traffic rules, vehicles at a red light are forced to
stop. In order to ensure data quality, we chop the traffic
video into fragments where vehicles passed through inter-
sections with the same traffic light conditions. The trajecto-
ries of all the vehicles are labeled. And we only learn the
trajectories of vehicles whose driving behaviors are only
affected by the driving environment and under green traffic
lights. Those vehicles affected by traffic lights or some other
self-factors (e.g., the stopping of a taxi due to the loading/
unloading of passengers) are not considered, and instead
they are considered as the known inputs in our model.

To this end, in our processed dataset, we have 1,347
vehicles driving straight, 426 vehicles turning left, and 471
vehicles turning right. To counterbalance different driving
directions, we rotated the data for the four possible incom-
ing driving directions to obtain 4 times of data for our deep
learning-based framework. Because of the different driving
patterns of the vehicles passing through intersections and
the non-uniform distribution of the data, we classify all the
vehicle trajectories into three classes: drive straight, turn
right, and turn left. For each vehicle trajectory, we use
Gaussian smoothing to remove tracking noise and high fre-
quency information.

4.2 Data Representation for Deep Learning

Based on the above vehicle trajectories, we need to first con-
vert them to a data representation that is particularly suit-
able for deep learning. For traffic simulation on freeways,
each vehicle needs to calculate its velocity and acceleration
at each frame. Different from the vehicles that drive along
explicitly pre-defined lanes, those vehicles passing through
intersections typically do not drive on explicitly pre-defined
lanes. Based on the discrete vehicle trajectory data, in this
paper, we use the FD velocity (denoted as V ) and the CD
velocity (denoted as D) to describe the detailed movement
of a vehicle (refer to Fig. 4). Here, the FD velocity (the red
arrows in Fig. 4) is used to calculate the next position that

Fig. 4. Illustration of the FD velocity V and CD velocity D of a vehicle. The
black dashed line is the path of vehicle at steps t� 1, t, and tþ 1. The
position of the vehicle at each step is denoted as L ¼ ðLx; LyÞ. So the
FD velocity of the vehicle at t is discretely calculated as V t ¼ Ltþ1 � Lt

(red arrow). In order to generate smooth trajectories, we further use
Gaussian smoothing to remove potential tracking noise and high fre-
quency information. The position of the vehicle after smooth at each
step is denoted as L̂ ¼ ðL̂x; L̂yÞ. And the CD velocity of the vehicle at t is
Dt ¼ L̂tþ1 � L̂t�1 (purple arrow).
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the vehicle drives towards based on the current position. The
CD velocity (the purple arrows in Fig. 4) is used to represent
the approximated tangential vector of the driving path at
each step. With such representations, the FD velocity ensures
the details of movement, such as collision avoidance. On the
other hand, the CD velocity ensures the smoothness of the
simulated trajectory.

EnvironmentMatrix. Visual depthmaps have been employed
in various applications with deep learning techniques [52],
[53], [54]. Analogously, the vehicles passing through an
intersection rely on the visual perception of the objects (e.g.,
vehicles, pedestrians, and obstacles) in the neighborhood,
such as their velocities and positions. Inspired by the concept
of visual depth maps and the characteristics of vehicle-envi-
ronment interactions, we introduce a grid coordinate system,
called grid map, in intersections to encode the interactions
between heterogeneous vehicles mixed with pedestrians. As
illustrated in Fig. 5, a trajectory in the grid map is in XY-
plane, and we map all the trajectories to the corresponding
grid map. With the aid of the grid map, searching for neigh-
boring objects (i.e., vehicles, pedestrians, or obstacles) of a
vehicle can be efficiently done. At each step, in order to
describe the driving environment around a vehicle, an envi-
ronment matrix M ¼ Vx; Vy;Np;F;x

� �
is built based on the

grid map of the vehicle. The environment matrix consists of
five channels, each of which has a resolution of 31 � 31 and
occupies an area of approximately 31 � 31 meters. Each
channel extends 15 grids alongX-axis and Y -axis bilaterally
from the grid where the vehicle’s center is located.
Specifically, we useOA to denote vehicleA. Its first two chan-
nels Vx and Vy are the FD velocity along the lateral axis
(X-axis) and the FD velocity along the vertical axis (Y -axis),
respectively. Np indicates the numbers of pedestrians and
bicycles in each grid.F represents the road grid map around
OA. The value of a grid is set to 1 if the vehicle can drive
into it. x represents the visible area: the value of a grid is set
to 1 if it is visible from the drone’s perspective. Through the

environment matrices, original vehicle-vehicle/pedestrian
interactions and vehicle kinematics are together encoded.

Vehicle Identity. When a vehicle drives through an intersec-
tion, the destination of its trajectory is its location at the last
step. ForOA, we use vehicle identity I ¼ vx; vy; cosa; cosb

� �
to

represent the vehicle’s driving information towards the desti-
nation at step t. vx and vy represent the FD velocities along the
lateral axis (X-axis) and along the vertical axis (Y -axis) at step
t, respectively.We also define a and b to describe the relation-
ship between the CD velocity D and motion. As illustrated in
Fig. 6, a is the angle between the CD velocity at t and the
CD velocity at the final step t0. b is the angle between the CD
velocity and the vector ~p (Fig. 6) from the position of the
vehicle at t to the destination of the trajectory at t0.

Driving State. ForOA, its driving state St ¼ M; Ið Þ at step t
consists of its environment matrixM and vehicle identity I.

Vehicle Trajectory. The trajectory status of OA at step t:
Gt ¼ ðV t;DtÞ, where V t and Dt respectively denote the FD
velocity and the CD velocity of the vehicle at step t. Here
we define V t ¼ ðvtx; vtyÞ and Dt ¼ ðDt

x;D
t
yÞ. The trajectory sta-

tus at t is decided by the historical driving states.
Therefore, the objective of our framework is to learn a

mapping function f from the driving states to the vehicle
trajectory, described as follows:

Gt ¼ fðSt�1; St�2; . . .Þ: (1)

5 TRAJECTORY LEARNING

Due to the different driving patterns of the vehicles passing
through intersections, our framework handles the cases of
driving straight, turning right, and turning left, separately.
For each case, the architecture of the neural network is the
same; only the training data are different.

In order to learn trajectories based on the driving state
St ¼ M; Ið Þ at step t, we build a network consisting of CNN-
RNN: the CNN is used to extract features from the environ-
ment matrix M, and the RNN is designed to learn the FD
velocities of the trajectories from sequence data. After train-
ing the networks, we use a geometric method to calculate
the CD velocities of each vehicle.

5.1 CNN Network Structure

To construct the environment features for trajectory learn-
ing, we use a CNN to extract features (denoted as �) from
the environment matrix M. Specifically, the CNN consists
of three convolutional layers and three pooling layers. Each

Fig. 5. Illustration of the Grid Map in this work. ForOA, a window with size
31 � 31 is used to describe the surrounding area. We build an environ-
ment matrixM ¼ Vx; Vy;Np;F;x

� �
including five channels. The grayscale

of a grid in Vx (or Vy) visualizes vx (or vy) ofOB andOC . The grayscale of a
grid inNp denotes the number of pedestrians and bicycles. The grids inF
and x represent the area into whichOA can drive and the visible area from
the drone’s perspective, respectively. The black color of a grid means its
value is 1.

Fig. 6. Illustration of the CD velocity of a vehicle. (a) and (b) are the
schematic view of a and b. The blue arrows denote the CD velocity at
each step. t0 is the last step along the path, and the purple arrows
denote the CD velocity at t0. The green arrows ~p are the vectors from
the position of the vehicle at a step t to its position at t0. a is the angle
between the CD velocity at t and the CD velocity at t0. b is the angle
between the CD velocity at t and vector ~p.
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convolutional layer performs a one-dimensional convolu-
tion over the matrix independently. The input of the CNN
is the environment matrix M ¼ Vx; Vy;Np;F;x

� �
and the

output of the CNN is the environment features � that con-
tain the current driving environmental information.

Fig. 7 illustrates the architecture of the usedCNN.At each
step, the CNN repeatedly applies convolution andmax pool-
ing onto the environment matrixM ¼ Vx; Vy;Np;F;x

� �
from

bottom to top. One convolutional layer and max pooling
layer can be described as

FðXÞ ¼ srðCðX⊛W y þ byÞÞ; (2)

where W y 2 Rl�n is the weights matrix initialized to some
small random values, by 2 Rn is the bias initialized to zero, l
and n represent the numbers of units in two adjacent layers,
⊛ is a convolution operation on X, and C denotes a max
pooling operation that is used to reduce the dimensionality
of the output from the previous convolutional layer.C takes
the maximum of each adjacent pair grids. srð�Þ is a nonlin-
ear operation ReLuð�Þ ¼ maxð0; �Þ. To this end, the environ-
ment matrix M is transformed and reduced to 4� 4� 32,
which is further reshaped to a 1� 512 vector.

5.2 RNN Network Structure

To generate the FD velocities of the vehicle trajectory, we use
a RNNon top of the combination of the environment features
� and vehicle identity I. As illustrated in Fig. 8, the used RNN
has two stack layers. At time step t, the driving state St ¼
M; Ið Þ after CNN is transformed to �; Ið Þ. For a sequence of �
and a sequence of I, we can easily map two sequences and
build a fully connected layer on top of it. We take the output
from the fully connected layer as the input to the RNN.

We employ the LSTM [55] as the basicmemory cell of each
layer in RNN. Each cell is explicitly controlled via an input
gate, an output gate, and a forget gate. The network employ-
ing memory cells overcomes the vanishing and exploding
gradients in traditional RNNs. It also facilitates the long term
storage of task-relevant data. Previously, LSTM has been
successfully used for human motion prediction and natural
language processing [56], [57], [58].

At step t, we denote the input and output of amemory cell
in one LSTM as Ct

I 2 Rh and Ct
O 2 Rh. We use Xt 2 Rd and

Ht 2 Rh to represent the input and output of one LSTM. All
the equations we employ in amemory cell are as follows:

For input gate : Gt
I ¼ sgðWIX

t þ UIH
t�1 þ bIÞ; (3)

For forget gate : Gt
F ¼ sgðWFX

t þ UFH
t�1 þ bF Þ; (4)

For output gate : Gt
O ¼ sgðWOX

t þ UOH
t�1 þ bOÞ; (5)

For cell input : Ct
I ¼ scðWcX

t þ UcH
t�1 þ bcÞ; (6)

For cell output : Ct
O ¼ Gt

I � Ct
I þGt

F � Ct�1
O ; (7)

For output of LSTM : Ht ¼ Gt
O � shðCt

OÞ: (8)

Here Gt
� 2 Rh (with � 2 fI; F;Og), and W� 2 Rh�d is a

weights matrix that connects Xt to the � gate and the cell
input. U� 2 Rh�h is a weights matrix that connects Ht�1 to
the � gate and the cell input. b� 2 Rh is the bias of � gate and
the cell input. sg is a sigmoid function and both sh and sc

represent hyperbolic tangent functions. The operator �
denotes the Hadamard product (entry-wise product). Specif-
ically, the subscripts d and h refer to the number of input fea-
tures and the number of hidden units, respectively. In our
experiments, we choose d ¼ 64 and h ¼ 84.

At step t ¼ T , the output of LSTM, HT , is utilized as an
input to a fully connected layer. The FD velocity V Tþ1 of the
vehicle trajectory at step T þ 1 can be calculated by

V Tþ1 ¼ HTW � þ b�: (9)

Here W � 2 Rh�s is the weights matrix between the LSTM
and the last fully connected layer, initialized to some small
random values, b� 2 Rs is the bias of the last fully connected

Fig. 7. Illustration of the used CNN architecture. Convolution 1 contains 8
filters of size 5 � 5. Convolution 2 contains 16 filters of size 5 � 5.
Convolution 3 contains 32 filters of size 5�5. The input to Convolution 1 is
M with size 31 � 31 � 5. After the Convolution 1 and Max Pooling 1,
its size becomes 16� 16 � 8. After the Convolution 2 and Max Pooling 2,
its size becomes 8� 8 � 16, and after the Convolution 3 andMax Pooling
3, its size becomes 4� 4 � 32. Finally, we reshape the output of Convolu-
tion 3 andMax Pooling 3 to a 1� 512 vector.

Fig. 8. Illustration of the used RNN architecture. At each step t, the
shape of �t is the 1� 512 vector from CNN. Together with It whose
size is 1� 4, a fully connected layer is built on top of them to generate
the input of RNN. After a two-stack-layers RNN, the output from LSTM
cell at t ¼ T , is utilized as an input to a fully connected layer. After fully
connected layer its size becomes 1� 2, namely V Tþ1.
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layer, which is initialized to zero, and s denotes the dimen-
sion of V . We choose T ¼ 8 and s ¼ 2 in our experiments.

5.3 Training

We train the whole CNN-RNN together. The network learn-
ing process can be regarded as optimizing the following dif-
ferentiable error function

EðW; bÞ ¼ SN
k¼1EkðW; bÞ

N
; (10)

where N represents the number of training data sequences,
andW and b represent the weights matrix and bias in CNN-
RNN, respectively. Our training criterion is to minimize the
squared loss between the output V and the ground truth V̂ .
Specifically, for an input sequence of driving states S ¼
M; Ið Þ, the loss function takes the following form:

EðW; bÞ ¼ S
N
k¼1EkðW; bÞ

N
¼ SN

k¼1 V T
k � V̂ T

k

�� ��2

N
: (11)

Iteratively, we calculate the error gradient and update the
network. We optimize the network using stochastic gradient
descent (SGD). The parameters in the training process
include batch size (512), learning rate (0.001) andmomentum
(0.9). To prevent over-fitting, we use a dropout strategy [59]
with the dropout ratio = 0.8. The optimization process contin-
ues until it converges or after 20,000 epochs. For each driving
pattern of the vehicles passing through intersections, the
vehicle trajectory sequence data are randomly divided into
three groups: 70 percent for training, 15 percent for valida-
tion, and 15 percent for test. We train our networks on an off-
the-shelf desktop computer with 2.7 GHz Intel Core I5-6400K
CPU and a GeForce 1,060 GPU (6 GB memory). Our frame-
workwas implemented on the Tensorflowplatform [60].

5.4 Generate the CD Velocities

Besides the above FD velocity V , we also need to calculate
the CD velocity D for each vehicle. We use the tangent vec-
tor of the driving path to represent the current CD velocity.
During our simulation, the position of a vehicle at tþ 1 is
still unknown. Therefore, we assume that the CD velocities
of the vehicle at two adjacent steps are sufficiently close due
to the motion continuity. We use the CD velocity at the pre-
vious step as the CD velocity at the current step.

We first use a Gaussian smoothing filter to process the
historical position data and remove high frequency infor-
mation. Then, Dt�1 ¼ ðDt�1

x ;Dt�1
y Þ is calculated using the fol-

lowing equation (also see Fig. 4)

Dt�1
x ¼ L̂t

x � L̂t�2
x ; (12)

Dt�1
y ¼ L̂t

y � L̂t�2
y ; (13)

where L̂t
x and L̂t

y denote the position of the vehicle at step t
along the lateral axis (X-axis) and the vertical axis (Y -axis)
processed with Gaussian smoothing, respectively.

It is noteworthy that our current method does not con-
sider any physical constraints of vehicles. Therefore, we
manually add some control policies to address this issue:
The FD velocity of a vehicle trajectory needs to satisfy the
physical constraints of themaximumacceleration,maximum

deceleration, and the steering limitation of the vehicle. Our
environment matrices could encode the vehicle-vehicle/
pedestrian interactions in the local neighborhood, which
contributes to avoid collisions. More collision avoidance
examples are presented in Section 6.2. Furthermore, if there
is an inevitable collision, we will randomly select and stop
one of the involved vehicles.

5.5 Simulation

Once the above framework is trained, we can use it to
simulate intersectional traffic. Based on a provided driving
state sequence as the initial condition, our method can simu-
late the detailed motions of the vehicles passing through
intersections.

Algorithm 1 details the process of intersectional traffic
simulation using our method. Given an initial vehicle set D
including the initial states of each vehicle, we first create a
grid map for each simulate step t. Here, the initial states of
each vehicle include arrival time, arrival position, arrival CD
velocity, arrival FD velocity, departure position, and depar-
ture CD velocity. So each vehicle can be easily classified
based on its arrival and departure positions. For each vehicle
in D, we collect the sequence of driving states S ¼ ðM; IÞ at
previous T steps. After feeding CNNwith the sequence ofM
(denoted as kM ), we map the sequence of � as the output of
CNN with the sequence of I (denoted as kI ). Then, we feed
the mapping sequence to RNN and calculate the FD velocity
V of the vehicle trajectory, which is further refined using the
rules of maximum acceleration and maximum deceleration.
Finally, we approximate the CD velocity D and write the tra-
jectory G ¼ ðV;DÞ into the current grid map. Iteratively, we
can simulate the whole scenario until all the vehicles in D
have driven through the intersection. Note that the step used
in the simulation is the same as the sampling interval in our
data (0.1 s).

Algorithm 1. Intersectional Traffic Simulation Process

Input:D;
1: create Grid Maps P
2: t T þ 1
3: WhileD is not empty do
4: for Oi 2 D do
5: for i ¼ 0; i < T ; iþþ do
6: p P t� i½ �
7: Search p forM ¼ Vx; Vy;Np;F;x

� �

8: Search p for I ¼ vx; vy; cosa; cosb
� �

9: kM T � i½ �  M
10: kI T � i½ �  I
11: end for
12: choose a CNN-RNN network class t
13: V  feed the CNN-RNN network t with kM and kI
14: V  V after control policy is applied
15: D CD velocity
16: store V and D in p

17: t ¼ tþ 1
18: if Oi arrive destination then
19: delete Oi fromD
20: end if
21: end for
22: end while
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6 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we show some experimental results by our
method. By specifying the trajectories of some pedestrians, a
new intersectional traffic simulation result can be generated
by our system. Furthermore, by specifying the terrain of the
intersection and the initial states of vehicles, our method can
also simulate traffic scenes with different terrains. The corre-
sponding animation results are enclosed in the supplemental
demo video, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2018.2889834.

Collision Avoidance. By encoding vehicle-vehicle/pedes-
trian interactionswithin the local neighborhood of each vehi-
cle, our method can implicitly avoid most collisions between
vehicles and between vehicles and pedestrians. Other colli-
sions can be avoided through pre-defined physical rules. For
example, in a typical simulation consisting of 77 vehicles and
727 frames, among a total of 7,547 time steps that need to be
predicted, only 401 (5.3 percent) time steps are corrected
with pre-defined physical rules. We show some examples in
Fig. 9. The vehicle OA in Fig. 9a drives straight and deceler-
ates to avoid collisions. The vehicle OD in Fig. 9b drives in
the same lane as OC . OD initially drives with a relatively low
FD velocity to avoid potential collisions withOC . The vehicle
OF in Fig. 9c also decelerates to avoid collisions with the bus
OH and the coming vehicle OI from the opposite direction.

The vehicle OJ in Fig. 9d decelerates to avoid collisions with
a group of pedestrians, and then accelerates towards the des-
tination. These examples demonstrate that the synthesized
vehicles by our method can effectively avoid collisions with
other vehicles or pedestrians.

6.1 Runtime Performance

Table 1 shows the runtime performances of our method and
the average runtime of generating the trajectory for a vehicle
at one step. The majority of the computational time is used
to search the grid map for M and I in order to learn V , and
to calculate the CD velocity D based on the historical trajec-
tories. We also utilized the mean absolute percentage error
(MAPE) and root mean squared error (MSE) to measure the
performance of our method.

In order to decrease the errors caused by non-uniform
data distribution, we classified all vehicle trajectories into
three categories and trained a different model for each cate-
gory to predict the FD velocity.We also compared our indivi-
dually-trained models with a global model that is trained
using all vehicle trajectories. The comparison results are
shown in Table 1. Clearly, the prediction errors of vx and vy
by the individually-trained models are generally smaller
than the global model. This is because the individually-
trained models can better reduce the impact of non-uniform
data distribution.

Fig. 9. Four collision avoidance examples by our method. The leftmost panel in each example shows the trajectories of all the vehicles. The middle
and right panels show the relative positions of the vehicles at two specific steps. Each black arrow indicates the driving direction of a vehicle. Different
color dots represent different steps. Dotted lines are the trajectories of vehicles and solid lines are the trajectories of pedestrians. OH is a bus and �
denotes the specific step of a pedestrian. (a-v), (b-v), (c-v) and (d-v) plot the FD velocity curve of vehicles OA, OD, OF and OJ , respectively.

TABLE 1
Runtime Performances of Our Method

RMSE MAPE TestData Runtime

individual integrated individual integrated Sample
Number

Frame
Number

Training
Time (hour)

Average Simulation Time
(per vehicle per step, second)vx vy vx vy vx vy vx vy

Drive Straight 0.0309 0.0289 0.0417 0.0398 0.0599 0.0673 0.0709 0.0994 3667 77469 10.547 1.535
Turn Left 0.0293 0.0304 0.0394 0.0425 0.0551 0.0679 0.0693 0.1112 1500 47475 6.988 1.632
Turn Right 0.0334 0.0348 0.0478 0.0480 0.0704 0.0881 0.0892 0.1114 1633 30724 5.863 1.647
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As shown in Table 1, the computational efficiency of our
approach is relatively low,mainly due to (1) the un-optimized
and un-parallelized implementation of our approach, and (2)
the relatively high computational cost of our approach. The
major computational cost per vehicle includes GridMap
construction and trajectory prediction for subsequent time
steps, and the GridMap construction step is more computa-
tionally expensive than the trajectory prediction step. In order
to predict detailed vehicle movements, we used a 31� 31
GridMap,which has a relatively high granularity.

6.2 Comparisons with Ground Truth

In order to evaluate the effectiveness of our method, we
compared the vehicle trajectories simulated by our method
and the ground truth. Specifically, given the trajectory data
of pedestrians and vehicles of other types (if any) as well as
the initial driving states of vehicles of interest, our method
can automatically generate intersectional traffic trajectories.

The trajectories of all three different driving patterns in
intersections were compared. The vehicles turning right,
driving straight, and turning left are denoted as Or, Os, Ol,
respectively. Without loss of generality, we illustrate four
specific steps in Fig. 10. We mainly compared the trajectories
in vx, vy and #. Here,We defined # as

# ¼ signðDt � Dt0 Þ � a: (14)

# is used to compare the simulated CD velocities of a vehi-
cle with the ground truth. Dt0 is its FD velocity at the last
step. With the driving towards the destination in an inter-
section, # is expected to gradually approach 0. Therefore,
signðDt � Dt0 Þ can reflect its relative relationship with the
destination at each step.

As shown in Fig. 10, compared with the ground truth, the
FD velocities alongX-axis and Y -axis (vx; vy) by our method
are roughly close to the ground truth. Based on the driving
environment at the current step, the vehicle can adjust its
FD velocity in a timely manner. The simulated CD velocities
also show similar patterns as the ground truth. For anima-
tion comparisons, please refer to the supplemental demo
video, available online. It is noteworthy that our framework
can only learn the trajectories of the vehicles whose behav-
iors are only affected by the driving environment and under
green traffic lights. In order to better visually compare our
method with the ground truth, the traffic light condition is
set to be the same as the ground truth. The vehicles at a red
light will be forced to stop. For example, from 0’49” to 1’30”
in the supplemental demo video, available online, only the
vehicles driving from the north/south, and the white

Fig. 10. Comparisons of the traffic trajectories simulated by our method and ground truth. (a), (b) and (c) separately show the trajectory of a vehicle
that is turning right, driving straight, and turning left, denoted as Or, Os, Ol, respectively. In each paired comparison (i.e., (a), (b), or (c)), the top row
shows the simulation result and the bottom row shows the ground truth trajectory. Also, the diagrams at the right compare the trajectories in vx, vy, #
between the simulation result and the ground truth.
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vehicle from the east at 0’51” are simulated by our method.
In addition, the trajectories of pedestrians, buses, articulated
buses are taken from the original traffic video data and used
as the known inputs to the grid map in our model for better
visual comparisons.

Validation of the FD Velocities.We use the validation of the
FD velocities to show the generalization of ourmodel. Specif-
ically, the arrival FD velocities in the initial states of all the
vehicles are statistically shown in Fig. 11b. Clearly, all the
arrival FD velocities are smaller than 2m/s. Without loss of
generality, we choose vehicle1 whose arrival FD velocity
v0 ¼ 0:703m=s. Here, we separately set the arrival FD veloci-
ties v00 ¼ 4v0, v000 ¼ 5v0, v0000 ¼ 6v0 for vehicle2, vehicle3,
vehicle4, respectively. As shown in Fig. 11a, we compare the
predicted FD velocities under the same driving environ-
ment. Although the arrival FD velocities in the initial states
are beyond the range of our dataset, the FD velocities pre-
dicted by our method are still reasonable. This is because the
predicted FD velocities partially depend on the grid map
that captures the surrounding driving environment. For ani-
mation results of the validation of the FD velocities, please
refer to the supplemental demo video, available online.

Length of the Generated Trajectory. Furthermore, we use
average displacement error (ADE) to evaluate the generated
trajectories with different lengths (T). ADE is the mean
squared error between the points of a predicted trajectory
and the points of the corresponding ground-truth trajectory.
We conducted experiments for T ¼ 6; 8; 10; 12; 14 sepa-
rately. As shown in Fig. 12, for those vehicles that turn left
or drive straight, the ADE performances are improved
with the increase of the trajectory length, since more

historical trajectory points can make better contributions to
the trajectory prediction. For the case of the right turn, only
when T <¼ 10, the ADE performance continues to be
improved with the increase of the length. One sound expla-
nation is that the path of right turn is often substantially
shorter than those of left turn and straight driving, and thus
it has fewer historical trajectory points for prediction.

6.3 Comparisons with Baselines

We further evaluated our method by quantitatively com-
paring it with four selected baseline methods that can be
adapted for intersectional traffic simulation, including the
well-known SUMO simulator [10], where the trajectories of
the vehicles in an intersection are simulated with a car-
following model along pre-defined lanes; the basic Vanilla
LSTM (V-LSTM) [61], where each vehicle trajectory is pre-
dicted independently, without considering interactions; the
Social LSTM (S-LSTM) [12], where each object is modeled via
an LSTM with a social pooling layer to encode interactions;
and the Social GAN (S-GAN) [14], which is a GAN based
encoder-decoder framework with a pooling mechanism to
learn social norms.Wedescribe our comparison results below.

Quantitative Metrics. In order to quantitatively compare
different methods, the first thing is to select quantitative
metrics. In this comparison, we selected the following two
metrics: (1) Average Displacement Error (ADE) to measure the
averaged trajectory difference, and (2) Final Displacement
Error (FDE) to measure the distance between the predicted
destination and the ground-truth destination at the end of a
vehicle trajectory. Table 2 shows the comparison results for
three types of driving behaviors in an intersection (i.e., drive
straight, turn left, and turn right) in terms of ADE and FDE.

Not surprisingly, the vehicle trajectories simulated by
SUMO had high ADE and FDE errors because the vehicles
were simulated along pre-defined lanes with a car-following

Fig. 12. ADE of the resulting vehicle trajectories by training our model
with different lengths (T ).

Fig. 11. (a) The predicted FD velocities with different arrival FD velocities
in the same driving environment. (b) The statistical results of arrival FD
velocities in the initial states of all the vehicles in the training dataset.

TABLE 2
Quantitative Comparisons of Our Method and the Four Baseline Methods

Method SUMO V-LSTM S-LSTM S-GAN Ours

Metric
ADE

(�10�2)
FDE

(�10�2)
ADE
(�10�2)

FDE
(�10�2)

ADE
(�10�2)

FDE
(�10�2)

ADE
(�10�2)

FDE
(�10�2)

ADE
(�10�2)

FDE
(�10�2)

Drive Straight 1.7703 3.5574 5.3580 7.9337 0.6922 1.3213 0.4651. 0.8370 0.2319 0.3796

Turn Left 2.3106 5.4953 6.6002 10.1907 0.7795 1.5775 0.3659 0.6011 0.1991 0.5149
Turn Right 2.6391 4.4936 5.4620 8.0288 1.1154 2.1969 0.3310 0.5986 0.3164 0.4144

Average 2.2400 4.5154 5.8067 8.7177 0.8627 1.6986 0.3873 0.6789 0.2491 0.4363
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model, which significantly simplifies the real-world intersec-
tional traffic. The vehicles driving straight and turning left/
right in the SUMOmodel use pre-defined lanes to avoid colli-
sions. If any potential collisions are in the range, the vehicles
will decelerate or completely stop in current lanes, which is
basically simplified to a queue system. Similarly, the V-LSTM
method also generated relatively high prediction errors since
it cannot effectively encode vehicle-vehicle/pedestrian inter-
actions. The trajectory of each vehicle is predicted based on
its own historical positions.

Both S-LSTM and S-GAN performed much better than
SUMO and V-LSTM. To predict more complex trajectories, S-
LSTM and S-GAN can capture certain interactions between
vehicles and pedestrians. Our method performed better than
both S-LSTM and S-GAN significantly for all three driving
behaviors (turn left/right, and drive straight) in terms of both
ADE and FDE because both S-LSTM and S-GAN assume all
vehicles and pedestrians have similar behavior patterns. Both
of them also ignore vehicle kinematics. By contrast, our
method considers vehicle-vehicle/pedestrian interactions
within the local neighborhood. Also, we input the relative-to-
destination position of each vehicle to the network at each
step, which helps to reduce the errors. By learning trajectories
and the implicit kinematics of each vehicle driving in
intersections from data, our method can produce more accu-
rate trajectory predictions.

6.4 Intersectional Traffic Editing

Our method can also be straightforwardly used to edit exist-
ing intersectional traffic by modifying some vehicles’ trajec-
tories, adding new vehicles, or deleting some existing
vehicles. Taking the modification of existing vehicles’ trajec-
tories as an example, the trajectory of a vehicle is decided by
M and I. Given a new (user-specified) destination for a vehi-
cle, at step t the angle between the vehicle’s CD velocity and
its CD velocity at the final step, a, will be changed accord-
ingly. Also, b, the angle between the vehicle’s CD velocity
and vector~p (refer to Fig. 6) will bemodified according to dif-
ferent destinations. Simultaneously, the trajectories of the
vehicles with new destinations will also affect the adjust-
ments of the neighboring vehicles.

We selected two traffic video clips as test data (denoted as
V#1 and V#2, respectively). V#1 has a total of 73 vehicles and

V#2 has a total of 79 vehicles. To test our method, we modi-
fied randomly selected 11 vehicles’ destinations in each of
them. Since our method can automatically adjust the trajecto-
ries of neighboring vehicles, a total of 23 vehicles in V#1 were
assigned with new trajectories and a total of 16 vehicles in
V#2 were assigned with new trajectories. Some 2D and
3D edited animation results of V#1 are shown in Fig. 14.
Based on the definition of the initial states of each vehicle in
Section 5.5, we use t-SNE [62] to visualize the high dimen-
sional initial states data in Fig. 13.Although some initial states
do not exist in our dataset, our framework can predict trajec-
tories according to the current driving environment. Refer to
the supplemental demo video, available online, for the edited
intersectional traffic results. Similar to the aforementioned
intersectional traffic simulation, the same traffic light condi-
tion as the original traffic video is used for better visual com-
parisons between our edited result and the original video.
The trajectories of pedestrians, buses, and articulated buses
are taken from the original traffic video data and used as the
known inputs to the grid map. For example, from 2’31” to
3’14” in the supplemental demo video, available online, only
the vehicles driving from the north/south, the red vehicle
from the west at 3’06” and the blue vehicle from the west at
3’08” are simulated by our method. In the two examples, we
only edited the specific vehicle trajectories, and the surround-
ing vehicleswill also change their trajectories accordingly.

6.5 Paired Comparison User Study

In order to further evaluate the effectiveness of our method,
we designed a paired comparison user study. V#1 and V#2
are randomly split into three scenes respectively (denoted

Fig. 14. Comparisons between the ground truth (top row) and the traffic
editing results in 3D (middle row) and 2D scenes (bottom row). (a)(c)(e)
and (b)(d)(f) are traffic snapshots at two selected steps randomly in V#1.
The red rectangular boxes highlight the modified destinations of vehicles.
The yellow rectangular boxes highlight the neighboring vehicles assigned
with new trajectories.

Fig. 13. Themiddle panel visualizes the high dimensional initial state data
with t-SNE [62]. The blue scatter points represent the training dataset.
The green scatter points represent the validation dataset and the test
dataset. The red points represent the initial states of the corresponding
edited vehicles in V#1. (a)(b)(c) Show some edited vehicles. The right top
of (a)(b)(c) displays the corresponding time in the supplemental demo
video, available online.
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as Scene1, Scene2, Scene3, Scene4, Scene5, and Scene6). For
each scene, we generated 2 pairs of 3D traffic animation (i.e.,
ground truth versus traffic simulation result, and ground
truth versus edited traffic result). To this end, we generated
18 intersectional traffic animations for this user study and
constructed 12 comparison pairs.

We recruited 36 participants to participate in our paired
comparison user study. All of them are graduate students in
a university. Avoidingmaking forced and inaccurate percep-
tion votes, they are required to perceptually select which is
the more realistic scene in each paired comparison, without
limiting watching time. In order to balance carryover effects
due to a small number of participants, we adopted the Wil-
liams design latin square [63] to display the pairs during the
study. We use one-sample t-tests to determine the 95 percent
Confidence Interval (CI) and paired-sample t-tests to com-
pare the difference of the true mean of two sets of data with
95 percent confidence. The conventional significance for the
entire analysis was determined at a ¼ 0:05, two tailed.

Fig. 15a shows the voting result of our user study for the 6
comparison pairs between the ground truth and the simula-
tion results. A paired-sample t-test shows the difference of
the true mean with 95 percent confidence between the
ground truth and the simulation results is are not statistically
significant (p = 0.6656 > 0.05). Fig. 15c shows the distribu-
tion of the number of scenes voted by each participant. The
median of ground truth is measurably equal to that of simu-
lation; the lower and upper quartile of ground truth and sim-
ulation are similar. This user study result indicates that the
simulation results and ground truth are visually equivalent,
to a large extent.

Similarly, Fig. 15b shows the voting result of our user
study for 6 comparison pairs between ground truth and the
edited traffic results. A paired-sample t-test shows the dif-
ference of the true mean with 95 percent confidence between

ground truth and editing is not statistically significant (p =
0.9049 > 0.05). Fig. 15d shows the distribution of the number
of scenes voted by each participant. The median of ground
truth is measurably equal to that of the edited traffic results;
the lower and upper quartile of ground truth and the edited
results are highly similar. The user study result indicates
that the edited traffic results and ground truth are perce-
ptually indistinguishable.

7 DISCUSSION AND CONCLUSION

We present a new deep learning-based framework to
simulate and edit traffic in intersections. A new data repre-
sentation containing heterogeneous vehicles mixed with
pedestrians is proposed and tailored for deep learning,
which also captures the vehicle-vehicle/pedestrian interac-
tions. Our representation has a higher granularity. Traffic is
driven by the trajectories learned through CNN-RNNwhose
input includes the driving environment and the intentions of
individual vehicles, defined as their environment matrices
and vehicle identities, respectively. By specifying novel des-
tinations and terrain, our method can be straightforwardly
used to edit traffic in intersections. In order to validate our
method, we compared our simulation and edited results
with ground truths and found that our results are visually
indistinguishable from the ground truth. Also, compared
with existing human trajectory prediction models that could
be adapted for intersectional traffic simulation, our method
outperformed them in terms of quantitativemetrics.

Our current method has a few limitations. First, the driv-
ing states of all previous steps are used as the inputs to gener-
ate the vehicle trajectories at the current step in the
simulation process, which could lead to accumulated errors
in long predicted sequences. Second, since as a purely data-
driven method, our current method does not contain any
physical implications; therefore, it may not be generalized
sufficiently to handle certain complex intersectional traffic
behaviors such as complex terrain in an intersection or crazy
driving. In order to learnmore accurate vehicle behavior pat-
terns, we classify the vehicle trajectory data to driving
straight, turning left, and turn right, and then learn corre-
sponding different models to reduce the impact from the
non-uniform distribution of the trajectory data. However,
this may not be the optimal solution. Third, in our current
method, pedestrians and other types of vehicles are simply
treated as inputs during our simulation; any potential inter-
actions between them are not considered.

There are a number of future directions to extend our cur-
rent framework. Algorithmically, we would like to optimize
and parallelize (via GPU or GPU+CPU) the current frame-
work to reduce the simulation time and improve the accuracy
of the simulated trajectories. Furthermore, a more general-
ized model to combine all driving behaviors including driv-
ing straight, turning left, and turning right, is necessary. Our
current framework treats traffic light signals as a separate
constraint. One potential solution is to extend the grid map
representation to encode traffic light signals. Also, we plan to
model the potential interaction among vehicles, pedestrians,
and other traffic factors as future work. Lastly, we plan to
build a complete traffic editing system to edit intersectional
trafficwith dynamically adjusting terrains.

Fig. 15. The experimental results of our user study. In (a) and (b), the
left black boxes and the right white boxes indicate the total number of
participants who voted for the corresponding method: Ground Truth
(GT), our Simulation results (SIM), and our Edited results (EDI). The
error bars in the average boxes indicate the 95 percent CI of the total
number of times when the participants voted the GT results. In (c) and
(d), the box and whisker plots show the distribution of the number of
scenes voted by each participant for the corresponding method.
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